Skip to main content
Log in

Quantum simulation of molecular interaction and dynamics at surfaces

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The interaction between molecules and solid surfaces plays important roles in various applications, including catalysis, sensors, nanoelectronics, and solar cells. Surprisingly, a full understanding of molecule-surface interaction at the quantum mechanical level has not been achieved even for very simple molecules, such as water. In this mini-review, we report recent progresses and current status of studies on interaction between representative molecules and surfaces. Taking water/metal, DNA bases/carbon nanotube, and organic dye molecule/oxide as examples, we focus on the understanding on the microstructure, electronic property, and electron-ion dynamics involved in these systems obtained from first-principles quantum mechanical calculations. We find that a quantum mechanical description of molecule-surface interaction is essential for understanding interface phenomenon at the microscopic level, such as wetting. New theoretical developments, including van der Waals density functional and quantum nuclei treatment, improve further our understanding of surface interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Grätzel, Acc. Chem. Res., 2009, 42: 1788

    Article  Google Scholar 

  2. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nat. Photonics, 2009, 3: 297

    Article  ADS  Google Scholar 

  3. For example, the very popular TIP3P model of water produces an OO distance of 2.75 Å and hydrogen bond angles of −4° and 158° in a water dimer, which are different from the corresponding values in first-principles calculations (2.95 Å, 5°, 125°) and experiment (2.98 Å, −1°, 123°). See S. Meng, Chapter 3, Ph.D. dissertation, Graduatue School of Chinese Academy of Sciences, Beijing, 2004

  4. S. Meng, L. F. Xu, E. G. Wang, and S. W. Gao, Phys. Rev. Lett., 2002, 89: 176104

    Article  ADS  Google Scholar 

  5. S. Meng, E. G. Wang, and S. W. Gao, Phys. Rev. B, 2004, 69: 195404

    Article  ADS  Google Scholar 

  6. S. Meng, E. G. Wang, C. Frischkorn, M. Wolf, and S. W. Gao, Chem. Phys. Lett., 2005, 402: 384

    Article  ADS  Google Scholar 

  7. J. Ren and S. Meng, J. Am. Chem. Soc., 2006, 128: 9282

    Article  Google Scholar 

  8. J. Ren and S. Meng, Phys. Rev. B, 2008, 77: 054110

    Article  ADS  Google Scholar 

  9. P. J. Feibelman, Science, 2002, 295: 99

    Article  ADS  Google Scholar 

  10. J. Carrasco, A. Michaelides, M. Forster, S. Haq, R. Raval, and A. Hodgson, Nat. Mater., 2009, 8: 427

    Article  ADS  Google Scholar 

  11. S. Meng, P. Maragakis, C. Papaloukas, and E. Kaxiras, Nano Lett., 2007, 7, 45

    Article  ADS  Google Scholar 

  12. S. Meng, W. L. Wang, P. Maragakis, and E. Kaxiras, Nano Lett., 2007, 7: 2312

    Article  ADS  Google Scholar 

  13. S. Meng, J. Ren, and E. Kaxiras, Nano Lett., 2008, 8: 3266

    Article  ADS  Google Scholar 

  14. S. Meng and E. Kaxiras, Nano Lett., 2010, 10: 1238

    Article  ADS  Google Scholar 

  15. J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter, 2002, 14: 2745

    Article  ADS  Google Scholar 

  16. P. Hohenberg and W. Kohn, Phys. Rev. B, 1964, 136: 864

    Article  ADS  MathSciNet  Google Scholar 

  17. W. Kohn and L. J. Sham, Phys. Rev. A, 1965, 140: 1133

    Article  ADS  MathSciNet  Google Scholar 

  18. G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54: 11169

    Article  ADS  Google Scholar 

  19. P. E. Blöchl, Phys. Rev. B, 1994, 50: 17953

    Article  ADS  Google Scholar 

  20. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77: 3865

    Article  ADS  Google Scholar 

  21. D. R. Hamann, Phys. Rev. B, 1997, 55: 10157

    Article  ADS  Google Scholar 

  22. S. Kurth, J. P. Perdew, and P. Blaha, Int. J. Quantum Chem., 1999, 75: 889

    Article  Google Scholar 

  23. N. Troullier and J. L. Martins, Phys. Rev. B, 1991, 43: 1993

    Article  ADS  Google Scholar 

  24. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett., 1980, 45: 566

    Article  ADS  Google Scholar 

  25. M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett., 2004, 92: 246401

    Article  ADS  Google Scholar 

  26. J. Ren, E. Kaxiras, and S. Meng, Mole. Phys., 2010, 108: 1829

    Article  ADS  Google Scholar 

  27. E. Runge and E. K. U. Gross, Phys. Rev. Lett., 1984, 52: 997

    Article  ADS  Google Scholar 

  28. S. Meng and E. Kaxiras, J. Chem. Phys., 2008, 129: 054110

    Article  ADS  Google Scholar 

  29. P. A. Thiel and T. E. Madey, Surf. Sci. Rep., 1987, 7: 211

    Article  ADS  Google Scholar 

  30. A. Hodgson and S. Haq, Surf. Sci. Rep., 2009, 64: 381

    Article  ADS  Google Scholar 

  31. G. Held and D. Menzel, Surf. Sci., 1994, 316: 92

    Article  ADS  Google Scholar 

  32. D. N. Denzler, C. Hess, R. Dudek, S. Wagner, C. Frischkorn, M. Wolf, and G. Ertl, Chem. Phys. Lett., 2003, 376: 618

    Article  ADS  Google Scholar 

  33. K. Jacobi, K. Bedurftig, Y. Wang, and G. Ertl, Surf. Sci., 2001, 472: 9

    Article  ADS  Google Scholar 

  34. H. Ogasawara, B. Brena, D. Nordlund, M. Nyberg, A. Pelmenschikov, L. G. M. Pettersson, and A. Nilsson, Phys. Rev. Lett., 2002, 89: 276102

    Article  ADS  Google Scholar 

  35. S. Meng, L. F. Xu, E. G. Wang, S. W. Gao, Phys. Rev. Lett., 2003, 91: 059602

    Article  ADS  Google Scholar 

  36. S. Meng, Surf. Sci., 2005, 575: 300

    Article  ADS  Google Scholar 

  37. A. Glebov, A. P. Graham, A. Menzel, and J. P. Toennies, J. Chem. Phys., 1997, 106: 9382

    Article  ADS  Google Scholar 

  38. S. Haq, J. Harnett, and A. Hodgson, Surf. Sci., 2002, 505: 171

    Article  ADS  Google Scholar 

  39. S. Nie, P. J. Feibelman, N. C. Bartelt, and K. Thürmer, Phys. Rev. Lett., 2010, 105: 026102

    Article  ADS  Google Scholar 

  40. T. Schiros, S. Haq, H. Ogasawara, O. Takahashi, H. Öström, K. Andersson, L. G. M. Pettersson, A. Hodgson, and A. Nilsson, Chem. Phys. Lett., 2006, 429: 415

    Article  ADS  Google Scholar 

  41. G. Held and D. Menzel, Phys. Rev. Lett., 1995, 74: 4221

    Article  ADS  Google Scholar 

  42. M. Morgenstern, T. Michely, and G. Comsa, Phys. Rev. Lett., 1996, 77: 703

    Article  ADS  Google Scholar 

  43. T. Yamada, S. Tamamori, H. Okuyama, and T. Aruga, Phys. Rev. Lett., 2006, 96: 036105

    Article  ADS  Google Scholar 

  44. J. J. Yang, S. Meng, L. F. Xu, and E. G. Wang, Phys. Rev. Lett., 2004, 92: 146102

    Article  ADS  Google Scholar 

  45. Y. Yang, S. Meng, and E. G. Wang, Phys. Rev. B, 2006, 74: 245409

    Article  ADS  Google Scholar 

  46. J. Lee, D. C. Sorescu, K. D. Jordan, and J. T. Yates, J. Phys. Chem. C, 2008, 112: 17672

    Article  Google Scholar 

  47. T. Mitsui, M. K. Rose, E. Fomin, D. F. Ogletree, and M. Salmeron, Science, 2002, 297: 1850

    Article  ADS  Google Scholar 

  48. V. A. Ranea, A. Michaelides, R. Ramírez, P. L. de Andres, J. A. Vergés, and D. A. King, Phys. Rev. Lett., 2004, 92: 136104

    Article  ADS  Google Scholar 

  49. S. Meng, E. G. Wang, and S. W. Gao, J. Chem. Phys., 2003, 119: 7617

    Article  ADS  Google Scholar 

  50. K. Morgenstern and J. Nieminen, Phys. Rev. Lett., 2002, 88: 066102

    Article  ADS  Google Scholar 

  51. A. Michaelides and K. Morgenstern, Nat. Mater., 2007, 6: 597

    Article  Google Scholar 

  52. S. Meng, E. Kaxiras, and Z. Y. Zhang, J. Chem. Phys., 2007, 127: 244710

    Article  ADS  Google Scholar 

  53. M. E. Tuckerman, D. Marx, and M. Parrinello, Nature, 2002, 417: 925

    Article  ADS  Google Scholar 

  54. J. E. Gunn and B. A. Peterson, Astrophys. J., 1965, 142: 1633

    Article  ADS  Google Scholar 

  55. D. Marx, M. E. Tuckerman, J. Hütter, and M. Parrinello, Nature, 1999, 397: 601

    Article  ADS  Google Scholar 

  56. K. Andersson, A. Nikitin, L. G. M. Pettersson, A. Nilsson, and H. Ogasawara, Phys. Rev. Lett., 2004, 93: 196101

    Article  ADS  Google Scholar 

  57. C. Clay, S. Haq, and A. Hodgson, Chem. Phys. Lett., 2004, 388: 89

    Article  ADS  Google Scholar 

  58. X. Z. Li, M. I. J. Probert, A. Alavi, and A. Michaelides, Phys. Rev. Lett., 2010, 104: 066102

    Article  ADS  Google Scholar 

  59. R. S. Smith, C. Huang, E. K. L. Wong, and B. D. Kay, Surf. Sci., 1996, 367: L13

    Article  Google Scholar 

  60. P. Löfgren, P. Ahlström, D. V. Chakarov, J. Lausmaa, and B. Kasemo, Surf. Sci., 1996, 367: L19

    Article  Google Scholar 

  61. S. Meng, Z. Zhang, and E. Kaxiras, Phys. Rev. Lett., 2006, 97: 036107

    Article  ADS  Google Scholar 

  62. M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson, and N. G. Tassi, Nat. Mater., 2003, 2: 338

    Article  ADS  Google Scholar 

  63. M. Zheng, A. Jagota, M. S. Strano, A. P. Santos, P. Barone, S. G. Chou, B. A. Diner, M. S. Dresselhaus, R. S. Mclean, G. B. Onoa, G. G. Samsonidze, E. D. Semke, M. Usrey, and D. J. Walls, Science, 2003, 302: 1545

    Article  ADS  Google Scholar 

  64. B. Gigliotti, B. Sakizzie, D. S. Bethune, R. M. Shelby, and J. N. Cha, Nano Lett., 2006, 6: 159

    Article  ADS  Google Scholar 

  65. D. A. Heller, E. S. Jeng, T. K. Yeung, B. M. Martinez, A. E. Moll, J. B. Gastala, and M. S. Strano, Science, 2006, 311: 508

    Article  ADS  Google Scholar 

  66. Y. Xu, P. E. Pehrsson, L. Chen, R. Zhang, and W. Zhao, J. Phys. Chem. C, 2007, 111: 8638

    Article  Google Scholar 

  67. G. O. Gladchenko, M. V. Karachevtsev, V. S. Leontiev, V. A. Valeev, A. Y. Glamazda, A. M. Plokhotnichenko, and S. G. Stepanian, Mole. Phys., 2006, 104: 3193

    Article  ADS  Google Scholar 

  68. H. J. Gao, Y. Kong, D. Cui, and C. S. Ozkan, Nano Lett., 2003, 3: 471

    Article  ADS  Google Scholar 

  69. H. J. Gao and Y. Kong, Annu. Rev. Mater. Res., 2004, 34: 123

    Article  ADS  Google Scholar 

  70. T. Okada, T. Kaneko, R. Hatakeyama, and K. Tohji, Chem. Phys. Lett., 2006, 417: 288

    Article  ADS  Google Scholar 

  71. J. D. Watson and F. H. C. Crick, Nature, 1953, 171: 737

    Article  ADS  Google Scholar 

  72. S. Iijima, Nature, 1991, 354: 56

    Article  ADS  Google Scholar 

  73. J. Li, H. T. Ng, A. Cassell, W. Fan, H. Chen, Q. Ye, J. Koehne, J. Han, and M. Meyyappan, Nano Lett., 2003, 3: 597

    Article  ADS  Google Scholar 

  74. N. W. S. Kam, Z. A. Liu, and H. J. Dai, Angew. Chem. Int. Ed., 2006, 45: 577

    Article  Google Scholar 

  75. C. Staii, A. T. Johnson, M. Chen, and A. Gelperin, Nano Lett., 2005, 5: 1774

    Article  ADS  Google Scholar 

  76. G. Lu, P. Maragakis, and E. Kaxiras, Nano Lett., 2005, 5: 897

    Article  ADS  Google Scholar 

  77. A. Star, E. Tu, J. Niemann, J. P. Gabriel, C. S. Joiner, and C. Valcke, Proc. Natl. Acad. Sci. USA, 2006, 103: 921

    Article  ADS  Google Scholar 

  78. E. S. Jeng, A. E. Moll, A. C. Roy, J. B. Gastala, and M. S. Strano, Nano Lett., 2006, 6: 371

    Article  ADS  Google Scholar 

  79. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, J. Comp. Chem., 1983, 4: 187

    Article  Google Scholar 

  80. A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. Karplus, J. Phys. Chem. B, 1998, 102: 3586

    Article  Google Scholar 

  81. S. V. Krivov, S. F. Chekmarev, and M. Karplus, Phys. Rev. Lett., 2002, 88: 038101

    Article  ADS  Google Scholar 

  82. R. Elber and M. Karplus, Science, 1987, 235: 318

    Article  ADS  Google Scholar 

  83. D. J. Wales and H. A. Scheraga, Science, 1999, 285: 1368

    Article  Google Scholar 

  84. D. J. Wales, Science, 2001, 293: 2067

    Article  ADS  Google Scholar 

  85. F. Ortmann, W. G. Schmidt, and F. Bechstedt, Phys. Rev. Lett., 2005, 95: 186101

    Article  ADS  Google Scholar 

  86. J. E. Freund, Ph.D. thesis, Ludwig-Mmaximilians Universität München, 1998

  87. A. N. Enyashin, S. Gemming, and G. Seifert, Nanotechnology, 2007, 18: 245702

    Article  ADS  Google Scholar 

  88. C. Fantini, A. Jorio, A. P. Santos, V. S. T. Peressinotto, and M. A. Pimenta, Chem. Phys. Lett., 2007, 439: 138

    Article  ADS  Google Scholar 

  89. M. Preuss, W. G. Schmidt, and F. Bechstedt, Phys. Rev. Lett., 2005, 94: 236102

    Article  ADS  Google Scholar 

  90. J. Tersoff and D. R. Hamann, Phys. Rev. B, 1985, 31: 805

    Article  ADS  Google Scholar 

  91. M. E. Hughes, E. Brandin, and J. A. Golovchenko, Nano Lett., 2007, 7: 1191

    Article  ADS  Google Scholar 

  92. Y. Murakami, E. Einarsson, T. Edamura, and S. Maruyama, Phys. Rev. Lett., 2005, 94: 087402

    Article  ADS  Google Scholar 

  93. J. Rajendra and A. Rodger, Chem. Eur. J., 2005, 11: 4841

    Article  Google Scholar 

  94. J. Schnadt, P. A. Bruhwiler, L. Patthey, J. N. O’shea, S. Sodergren, M. Odelius, R. Ahuja, O. Karis, M. Bassler, P. Persson, H. Siegbahn, S. Lunell, and N. Martensson, Nature, 2002, 418: 620

    Article  ADS  Google Scholar 

  95. S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug, and J. R. Durrant, J. Am. Chem. Soc., 2005, 127: 3456

    Article  Google Scholar 

  96. J. B. Asbury, E. Hao, Y. Wang, and T. Lian, J. Phys. Chem. B, 2000, 104: 11957

    Article  Google Scholar 

  97. C. W. Chang, L. Luo, C. K. Chou, C. F. Lo, C. Y. Lin, C. S. Hung, Y. P. Lee, and E. W. Diau, J. Phys. Chem. C, 2009, 113: 11524

    Article  Google Scholar 

  98. L. Schimka, J. Harl, A. Stroppa, A. Grüneis, M. Marsman, F. Mittendorfer, and G. Kresse, Nat. Mater., 2010, 9: 741

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Meng  (孟胜).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Zj., Jiao, Y. & Meng, S. Quantum simulation of molecular interaction and dynamics at surfaces. Front. Phys. 6, 294–308 (2011). https://doi.org/10.1007/s11467-011-0163-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-011-0163-6

Keywords

Navigation