Skip to main content
Log in

Unified hardening (UH) model for unsaturated expansive clays

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

In this paper, by introducing a new yielding mechanism based on the widely acknowledged double-structure theory, the original UH model for unsaturated soils is extended to capture the behaviour of expansive clays. A novel expansion potential is further established to evaluate the effect of overconsolidation on the volume change of unsaturated expansive clays during wetting. With only one additional parameter, the proposed model can describe the behaviour of both wetting-collapse and wetting-induced swelling for unsaturated clays. Comparisons between model predictions and test results show a good agreement which verifies the capability of the proposed model in charactering the features of unsaturated expansive clays under various stress histories and stress paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12

Similar content being viewed by others

Abbreviations

\({D}_{ijkl}^{\mathrm{ep}}\) :

Elasto-plastic constitutive tensor

\(E\) :

Elastic modulus

\(f\) :

Current yield function

\(\overline{f }\) :

Reference yield surface

\(\widetilde{f}\) :

Current yield surface in the transformed stress space

\({f}_{\mathrm{d}}\) :

Magnification factor

\(G\) :

Shear modulus

\(H\) :

Unified hardening parameter

\(J\) :

Material parameter representing the swelling capacity of expansive clays

\(K\) :

Elastic bulk modulus

\(k\) :

A constant describing the increase in cohesion with suction

\({K}_{\mathrm{m}}\) :

Scale factor for determinate macrostructural plastic volumetric strain

\(L\) :

Lame’s constant

\(M\) :

Characteristic state stress ratio

\({M}_{\mathrm{Ys}}\) :

Potential failure stress ratio

\({\widetilde{M}}_{\mathrm{Ys}}\) :

Potential failure stress ratio in transformed stress space

\(p\) :

Net mean stress

\(\widehat{p}\) :

Mean stress considering the suction

\(\overline{p }\) :

Reference mean effective stress

\(\widetilde{p}\) :

Mean net stress in transformed stress space

\(\widetilde{\overline{p} }\) :

Reference mean effective stress in transformed stress space

\({p}_{\text{at}}\) :

Atmospheric pressure

\({p}^{\mathrm{c}}\) :

Reference suction stress

\({p}_{s}\) :

Suction stress

\({p}_{\mathrm{x}}\) :

Right intersection of current yield surface and p-axis

\({\overline{p} }_{\mathrm{x}}\) :

Right intersection of reference yield surface and p-axis

\({p}_{\mathrm{x}}^{*}\) :

Preconsolidation pressures for saturated clays

\({\overline{p} }_{\mathrm{x}}^{*}\) :

Right intersection of the reference yield surface and the p axis for saturated clays

\({\overline{p} }_{\mathrm{x}0}\)::

Right intersection of reference yield surface and p-axis in the initial condition

\(q\) :

Deviatoric stress

\(\widehat{q}\) :

Deviatoric stress considering the suction

\(\overline{q }\) :

Reference deviatoric stress

\(\widetilde{q}\) :

Deviatoric stress in transformed stress space

\({\widehat{q}}_{\mathrm{c}}\) :

Deviatoric stress under triaxial compression condition in the SMP criterion

\({R}_{\mathrm{s}}\) :

Overconsolidation parameter

\({\widetilde{R}}_{\mathrm{s}}\) :

Overconsolidation parameter in transformed stress space

\({s}_{0}\) :

Maximum suction in history

\({X}_{\mathrm{m}}\) :

Scale factor for determinate microstructural volumetric strain

\(\beta\) :

Material parameter controlling the rate of increase of soil stiffness with suction

\(\gamma\) :

Material parameter defining the maximum soil stiffness

\({\delta }_{ij}\) :

Kronecker’s delta

\({\varepsilon }_{\mathrm{d}}\) :

Total deviatoric strain

\({\varepsilon }_{\mathrm{d}}^{\mathrm{e}}\) :

Elastic deviatoric strain

\({\varepsilon }_{\mathrm{d}}^{\mathrm{p}}\) :

Plastic deviatoric strain

\({\varepsilon }_{kl{\mathrm{p}}_{\mathrm{m}}}^{\mathrm{p}}\) :

Plastic strain induced by the microstructural deformation

\({\varepsilon }_{kl{\mathrm{p}}_{\mathrm{s}}}^{\mathrm{e}}\) :

Elastic strain induced by \({p}_{\mathrm{s}}\)

\({\varepsilon }_{\mathrm{m}}\) :

Microstructural volumetric strain

\({\varepsilon }_{\mathrm{v}}\) :

Total volumetric strain

\({\varepsilon }_{\mathrm{v}}^{\mathrm{e}}\) :

Elastic volumetric strain

\({\varepsilon }_{\mathrm{vp}}^{\mathrm{e}}\) :

Elastic volumetric strain induced by the change of the net stress

\({\varepsilon }_{\mathrm{vp}}^{\mathrm{p}}\) :

Plastic volumetric strain induced by the expansion of the current LC yield surface

\({\varepsilon }_{\mathrm{vs}}\) :

Volumetric strain induced by the suction change

\({\varepsilon }_{\mathrm{vs}}^{\mathrm{e}}\) :

Elastic volumetric strain induced by the suction change

\({\varepsilon }_{\mathrm{vs}}^{\mathrm{p}}\) :

Macrostructural plastic volumetric strain induced by suction change

\(\widehat{\eta }\) :

Stress ratio

\(\widetilde{\eta }\) :

Stress ratio in transformed stress space

\(\widehat{\theta }\) :

Lode’s angel

\(\kappa\) :

Slope of unloading line for unsaturated clays

\({\kappa }_{\mathrm{s}}\) :

Slope of compression line in the \(e-\mathrm{ln}s\) plane when the suction is less than or equal to \({s}_{0}\)

\(\Lambda\) :

Plastic multiplier

\(\lambda \left(0\right)\) :

Slope of the compression curves for saturated clays

\(\lambda \left(s\right)\) :

Slope of the compression curves for unsaturated clays with the suction s

\({\lambda }_{\mathrm{s}}\) :

Slope of compression line in the \(e-\mathrm{ln}s\) plane when the suction exceeds \({s}_{0}\)

\(v\) :

Poisson’s ratio

\({\rho }_{\mathrm{d}}\) :

Initial dry density

\({\rho }_{\mathrm{w}}\) :

Density of water

\({\sigma }_{i}\) :

Principal stress

\({\widehat{\sigma }}_{i}\) :

Principal stress considering the suction

\({\sigma }_{ij}\) :

Stress tensor

\({\widehat{\sigma }}_{ij}\) :

Stress tensor considering the suction

\({\widetilde{\sigma }}_{ij}\) :

Transformed stress tensor

\({\sigma }_{ij}^{{\mathrm{p}}_{\mathrm{s}}}\) :

Stress related to \({p}_{\mathrm{s}}\)

\({\sigma }_{\mathrm{v}}\) :

Vertical pressures

\(\widehat{\Omega }\) :

Coefficient related to overconsolidation

\(\widetilde{\Omega }\) :

Coefficient related to overconsolidation in transformed stress space

References

  1. Alonso EE, Gens A, Josa A (1990) A constitutive model for partially saturated soils. Géotechnique 40(3):405–430. https://doi.org/10.1680/geot.1990.40.3.405

    Article  Google Scholar 

  2. Alonso EE, Lloret A, Gens A, Yang DQ (1995) Experimental behaviour of highly expansive double-structure clay. In: Proc 1st international conference on unsaturated soils 1: 11–6

  3. Alonso EE, Vaunat J, Gens A (1999) Modelling the mechanical behaviour of expansive clays. Eng Geol 54(1–2):173–183. https://doi.org/10.1016/S0013-7952(99)00079-4

    Article  Google Scholar 

  4. Chen R (2007) Experimental study and constitutive modelling of stress-dependent coupled hydraulic hysteresis and mechanical behaviour of an unsaturated soil. PhD thesis, The Hong Kong University of Science and Technology, China

  5. Chiu CF, Ng CWW (2003) A state-dependent elastoplastic model for saturated and unsaturated soils. Géotechnique 53(9):809–829. https://doi.org/10.1680/geot.2003.53.9.809

    Article  Google Scholar 

  6. Chu TY, Mou CH (1973) Volume change characteristics of expansive soils determined by controlled suction test. In: Proc 3rd international conference on expansive soils 1: 177–185

  7. Escario V, Saez J (1986) The shear strength of partly saturated soils. Geotechnique 36(3):453–456. https://doi.org/10.1680/geot.1986.36.3.453

    Article  Google Scholar 

  8. Gao Y, Li Z, Cui W, Sun DA, Yu HH (2023) Effect of initial void ratio on the tensile strength of unsaturated silty soils. Acta Geotech 18:3609–3622. https://doi.org/10.1007/s11440-023-01800-z

    Article  Google Scholar 

  9. Gens A, Alonso EE (1992) A framework for the behaviour of unsaturated expansive clays. Can Geotech 29(6):1013–1032. https://doi.org/10.1139/t92-120

    Article  Google Scholar 

  10. Kassiff G, Baker R, Ovadia Y (1973) Swell-pressure relationships at constant suction changes. In: Proc 3rd international conference on expansive soils 1: 201–208

  11. Kayabali K, Demir S (2011) Measurement of swelling pressure: direct method versus indirect methods. Can Geotech 48(3):354–364

    Article  Google Scholar 

  12. Kyokawa H (2021) A double structure model for hydro-mechano-chemical behavior of expansive soils based on the surface phenomena of mineral crystals. Eng Geol 294:106366. https://doi.org/10.1016/j.enggeo.2021.106366

    Article  Google Scholar 

  13. Li J, Yin ZY, Cui YJ, Hicher PY (2017) Work input analysis for soils with double porosity and application to the hydro-mechanical modeling of unsaturated expansive clays. Can Geotech 54(2):173–187. https://doi.org/10.1139/cgj-2015-0574

    Article  Google Scholar 

  14. Li W, Yang Q (2017) A macro-structural constitutive model for partially saturated expansive soils. Bull Eng Geol Environ 76(3):1075–1084. https://doi.org/10.1007/s10064-016-0933-z

    Article  MathSciNet  Google Scholar 

  15. Lloret A, Villar MV (2007) Advances on the knowledge of the thermo-hydro-mechanical behaviour of heavily compacted “FEBEX” bentonite. Phys Chem Earth, Parts A/B/C 32(8–14):701–715. https://doi.org/10.1016/j.pce.2006.03.002

    Article  Google Scholar 

  16. Lloret-Cabot M, Wheeler SJ, Sánchez M (2017) A unified mechanical and retention model for saturated and unsaturated soil behavior. Acta Geotech 12:1–21. https://doi.org/10.1007/s11440-016-0497-x

    Article  Google Scholar 

  17. Lu PH, Ye WM, He Y (2023) A constitutive model of compacted bentonite under coupled chemo-hydro-mechanical conditions based on the framework of the BExM. Comput Geotech 158:105360. https://doi.org/10.1016/j.compgeo.2023.105360

    Article  Google Scholar 

  18. Lu ZH, Chen ZH, Sun SG (2002) Study on deformation and strength characteristic of expansive soil with triaxial tests. CJRME 21(5):717–723. https://doi.org/10.3321/j.issn:1000-6915.2002.05.024

    Article  Google Scholar 

  19. Mašín D (2013) Double structure hydromechanical coupling formalism and a model for unsaturated expansive clays. Eng Geol 165:73–88. https://doi.org/10.1016/j.enggeo.2013.05.026

    Article  Google Scholar 

  20. Matsuoka H, Nakai T (1974) Stress-deformation and strength characteristics of soil under three different principal stresses. Proceed Japan Soc Civil Eng 232:59–70. https://doi.org/10.2208/jscej1969.1974.232_59

    Article  Google Scholar 

  21. Ng CWW, Zhou C, Chiu CF (2020) Constitutive modelling of state-dependent behaviour of unsaturated soils: an overview. Acta Geotech 15:2705–2725. https://doi.org/10.1007/s11440-020-01014-7

    Article  Google Scholar 

  22. Pousada PE (1982) Deformabilidad de arcillas expansivas bajo succíon controlada. Doctoral thesis, Universidad Politénica deMadrid, Spain.

  23. Sánchez M, Gens A, do Nascimento Guimarães L, Olivella S, (2005) A double structure generalized plasticity model for expansive materials. Int J Numer Anal Methods Geomech 29(8):751–787. https://doi.org/10.1002/nag.434

    Article  Google Scholar 

  24. Sheng DC (2011) Review of fundamental principles in modelling unsaturated soil behaviour. Comput Geotech 38(6):757–776. https://doi.org/10.1016/j.compgeo.2011.05.002

    Article  Google Scholar 

  25. Sun DA, Matsuoka H, Yao YP, Ichihara W (2000) An elastoplastic model for unsaturated soil in three-dimensional stresses. Soils Found 40(3):17–28. https://doi.org/10.3208/sandf.40.3_17

    Article  Google Scholar 

  26. Sun DA, Sheng DC (2005) An elastoplastic hydro-mechanical model for unsaturated compacted soils. In: Tarantino A, Romero E, Cui YJ editors. Advanced experimental unsaturated soil mechanics 249–55.

  27. Sun WJ, Sun DA (2012) Coupled modelling of hydro-mechanical behaviour of unsaturated compacted expansive soils. Int J Numer Anal Methods Geomech 36(8):1002–1022. https://doi.org/10.1002/nag.1036

    Article  Google Scholar 

  28. Wang Q, Cui YJ, Tang AM, Li XL, Ye WM (2014) Time- and density-dependent microstructure features of compacted bentonite. Soils Found 54(4):657–666. https://doi.org/10.1016/j.sandf.2014.06.021

    Article  Google Scholar 

  29. Wang Q, Tang AM, Cui YJ, Barnichon JD, Ye WM (2013) Investigation of the hydro-mechanical behaviour of compacted bentonite/sand mixture based on the BExM model. Comput Geotech 54:46–52. https://doi.org/10.1016/j.compgeo.2013.05.011

    Article  Google Scholar 

  30. Wang Y (2020) A thermo-hydro-mechanical coupled constitutive model for bentonite based on critical saturation state surface. PhD thesis, Tongji University, China

  31. Wang Y, Ye WM, Wang Q, Chen YG, Cui YJ (2022) A critical saturated state-based constitutive model for volumetric behavior of compacted bentonite. Can Geotech 59(11):1872–1886. https://doi.org/10.1139/cgj-2021-0213

    Article  Google Scholar 

  32. Wheeler SJ, Sivakumar V (1995) An elasto-plastic critical state framework for unsaturated soil. Géotechnique 45(1):35–53. https://doi.org/10.1680/geot.1995.45.1.35

    Article  Google Scholar 

  33. Yao YP, Matsuoka H, Sun DA (1999) A unified elastoplastic model for clay and sand with the SMP criterion. In: Proc 8th Australia-New Zealand conference on geomechanics 2: 997–1003

  34. Yao YP, Sun DA (2000) Application of Lade’s criterion to Cam-clay model. J Eng Mech 126(1):112–119. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(112)

    Article  Google Scholar 

  35. Yao YP, Sun DA (2001) Closure of “application of Lade’s criterion to Cam-clay model.” J Eng Mech 127(6):632–633. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:6(632)

    Article  Google Scholar 

  36. Yao YP, Hou W, Zhou AN (2009) UH model: three-dimensional unified hardening model for overconsolidated clays. Géotechnique 59(5):451–469

    Article  Google Scholar 

  37. Yao YP, Yang YF, Niu L (2011) UH model considering temperature effects. Sci China Technol Sci 54(1):190–202. https://doi.org/10.1007/s11431-010-4209-8

    Article  Google Scholar 

  38. Yao YP, Kong YX (2012) Extended UH model: three-dimensional unified hardening model for anisotropic clays. J Eng Mech 138(7):853–866. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000397

    Article  Google Scholar 

  39. Yao YP, Gao ZW, Zhao JD, Wan Z (2012) Modified UH model: constitutive modeling of overconsolidated clays based on a parabolic Hvorslev envelope. J Geotech Geoenviron Eng 138(7):860–868. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000649

    Article  Google Scholar 

  40. Yao YP, Zhou AN (2013) Non-isothermal unified hardening model: a thermos-elasto-plastic model for clays. Geotechnique 63(15):1328–1345

    Article  Google Scholar 

  41. Yao YP, Niu L, Cui WJ (2014) Unified hardening (UH) model for overconsolidated unsaturated soils. Can Geotech 51(7):810–821. https://doi.org/10.1139/cgj-2013-0183

    Article  Google Scholar 

  42. Yao YP, Wang ND (2014) Transformed stress method for generalizing soil constitutive models. J Eng Mech 140(3):614–629

    Article  Google Scholar 

  43. Yao YP, Kong LM, Zhou AN, Yin JH (2015) Time-dependent unified hardening model: three-dimensional elastoviscoplastic constitutive model for clays. J Eng Mech 141(6):04014162-1–04014162-18

    Article  Google Scholar 

  44. Yao YP, Tian Y, Gao ZW (2017) Anisotropic UH model for soils based on a simple transformed stress method. Int J Numer Anal Methods Geomech 41:54–78. https://doi.org/10.1002/nag.2545

    Article  Google Scholar 

  45. Ye WM, Huang Y, Cui YJ, Tang YQ, Delage P (2005) Microstructural changing characteristics of densely compacted bentonite with suction under unconfined hydrating conditions. CJRME 24(24):4570–4575

    Google Scholar 

  46. Ye WM, Schanz T, Qian LX, Wang J, Arifin Y (2007) Characteristics of swelling pressure of densely compacted Gaomiaozi bentonite GMZ01. CJRME 26(Suppl. 2):3861–3865

    Google Scholar 

  47. Zhan LT (2003) Field and laboratory study of an unsaturated expansive soil associated with rain-induced slope instability. PhD thesis, The Hong Kong University of Science and Technology, China

  48. Zhan LT, Chen R, Ng CWW (2014) Wetting-induced softening behavior of an unsaturated expansive clay. Landslides 11(6):1051–1061

    Article  Google Scholar 

  49. Zhou AN, Sheng DC (2015) An advanced hydro-mechanical constitutive model for unsaturated soils with different initial densities. Comput Geotech 63:46–66. https://doi.org/10.1016/j.compgeo.2014.07.017

    Article  Google Scholar 

Download references

Acknowledgements

This paper was supported by the National Natural Science Foundation of China (Grant Nos. 52238007, and 51979001) and the National Key Research and Development Plan of China (Grant No. 2018YFE0207100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjie Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Derivation of three-dimensional elastoplastic stress–strain relationship

Appendix: Derivation of three-dimensional elastoplastic stress–strain relationship

As shown in Fig. 4, \({\widehat{\sigma }}_{i}={\sigma }_{i}+{p}_{\mathrm{s}}\) is the principal stress considering the suction and \(\widehat{\theta }\) is the corresponding Lode’s angel. The transformation from the general stress space to the transformed stress space can be expressed as

$$\left\{\begin{array}{c}{\widetilde{\sigma }}_{ij}={\widehat{\sigma }}_{ij} , \widehat{q}=0\\ {\widetilde{\sigma }}_{ij}=\widehat{p}{\delta }_{ij}+\frac{{\widehat{q}}_{\mathrm{c}}}{\widehat{q}}({\widehat{\sigma }}_{ij}-\widehat{p}{\delta }_{ij}), \widehat{q}\ne 0\end{array}\right.$$
(45)

where

$$\widehat{p}=\frac{{\widehat{\sigma }}_{1}+{\widehat{\sigma }}_{2}+{\widehat{\sigma }}_{3}}{3}$$
(46)
$$\widehat{q}=\sqrt{\frac{1}{2}\left[{\left({\widehat{\sigma }}_{1}-{\widehat{\sigma }}_{2}\right)}^{2}+{\left({\widehat{\sigma }}_{2}-{\widehat{\sigma }}_{3}\right)}^{2}+{\left({\widehat{\sigma }}_{3}-{\widehat{\sigma }}_{1}\right)}^{2}\right]}$$
(47)
$${\widehat{q}}_{\mathrm{c}}=\frac{2{\widehat{I}}_{1}}{3\sqrt{\frac{{\widehat{I}}_{1}{\widehat{I}}_{2}-{\widehat{I}}_{3}}{{\widehat{I}}_{1}{\widehat{I}}_{2}-9{\widehat{I}}_{3}}-1}}$$
(48)
$${\widehat{I}}_{1}={\widehat{\sigma }}_{ii}$$
(49)
$${\widehat{I}}_{2}=\frac{1}{2}\left[{\left({\widehat{\sigma }}_{ii}\right)}^{2}-{\widehat{\sigma }}_{rs}{\widehat{\sigma }}_{sr}\right]$$
(50)
$${\widehat{I}}_{3}=\frac{1}{3}{\widehat{\sigma }}_{ij}{\widehat{\sigma }}_{jk}{\widehat{\sigma }}_{ki}-\frac{1}{2}{\widehat{\sigma }}_{rs}{\widehat{\sigma }}_{sr}{\widehat{\sigma }}_{mm}+\frac{1}{6}{\left({\widehat{\sigma }}_{nn}\right)}^{3}$$
(51)

Integrating Eq. (45), the UH model for unsaturated expansive clays in 3D stress space can be expressed using tensor as

$$\mathrm{d}{\sigma }_{ij}+\mathrm{d}{\sigma }_{ij}^{{\mathrm{p}}_{\mathrm{s}}}={D}_{ijkl}^{\mathrm{ep}}\left(\mathrm{d}{\varepsilon }_{kl}-\mathrm{d}{\varepsilon }_{kl{\mathrm{p}}_{\mathrm{s}}}^{\mathrm{e}}-\mathrm{d}{\varepsilon }_{kl{\mathrm{p}}_{\mathrm{m}}}^{\mathrm{p}}\right)$$
(52)

where \({\sigma }_{ij}^{{\mathrm{p}}_{\mathrm{s}}}\) is the stress related to \({p}_{\mathrm{s}}\), \({\varepsilon }_{kl{\mathrm{p}}_{\mathrm{s}}}^{\mathrm{e}}\) is the elastic strain induced by \({p}_{\mathrm{s}}\), \({\varepsilon }_{kl{\mathrm{p}}_{\mathrm{m}}}^{\mathrm{p}}\) is the plastic strain induced by the microstructural swelling and \({D}_{ijkl}^{\mathrm{ep}}\) is the elasto-plastic constitutive tensor which can be expressed as:

$$\begin{array}{c}{D}_{ijkl}^{\mathrm{ep}}=L{\delta }_{ij}{\delta }_{kl}+G\left({\delta }_{ik}{\delta }_{jl}+{\delta }_{il}{\delta }_{jk}\right)\#\\ -\frac{(L\frac{\partial \widetilde{f}}{\partial {\widetilde{\sigma }}_{mm}}{\delta }_{ij}+2G\frac{\partial \widetilde{f}}{\partial {\widetilde{\sigma }}_{ij}})(L\frac{\partial \widetilde{f}}{\partial {\sigma }_{nn}}{\delta }_{kl}+2G\frac{\partial \widetilde{f}}{\partial {\sigma }_{kl}})}{X}\end{array}$$
(53)

where

$$X=L\frac{\partial \widetilde{f}}{\partial {\sigma }_{ii}}\frac{\partial \widetilde{f}}{\partial {\widetilde{\sigma }}_{kk}}+2G\frac{\partial \widetilde{f}}{\partial {\sigma }_{ij}}\frac{\partial \widetilde{f}}{\partial {\widetilde{\sigma }}_{ij}}-\frac{\partial \widetilde{f}}{\partial {p}_{\mathrm{x}}}\frac{\partial {p}_{\mathrm{x}}}{\partial {p}_{\mathrm{x}}^{*}}\frac{\partial {p}_{\mathrm{x}}^{*}}{\partial H}\frac{1}{\widetilde{\Omega }}$$
(54)
$$L=K-\frac{2}{3}G$$
(55)

\(\widetilde{f}\) is the current yield surface in the transformed stress space which can be expressed as

$$\widetilde{f}=\mathrm{ln}\widetilde{p}+\mathrm{ln}\left(1+\frac{{\widetilde{q}}^{2}}{{M}^{2}{\widetilde{p}}^{2}}\right)-\mathrm{ln}({p}_{\mathrm{x}}+{p}_{\mathrm{s}})=0$$
(56)

where

$$\widetilde{p}=\widehat{p}$$
(57)
$$\widetilde{q}={\widehat{q}}_{c}$$
(58)

and

$$\frac{1}{\widetilde{\Omega }}=\frac{{\widetilde{M}}_{\mathrm{Ys}}^{4}-{\widetilde{\eta }}^{4}}{{M}^{4}-{\widetilde{\eta }}^{4}}$$
(59)
$${\widetilde{M}}_{\mathrm{Ys}}=6\left[\sqrt{\frac{\chi }{{\widetilde{R}}_{\mathrm{s}}}\left(1+\frac{\chi }{{\widetilde{R}}_{\mathrm{s}}}\right)}-\frac{\chi }{{\widetilde{R}}_{\mathrm{s}}}\right]$$
(60)

where

$$\widetilde{\eta }=\frac{\widetilde{q}}{\widetilde{p}}$$
(61)
$${\widetilde{R}}_{\mathrm{s}}=\frac{\widetilde{p}}{\widetilde{\overline{p}} }$$
(62)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Tian, Y., Cui, W. et al. Unified hardening (UH) model for unsaturated expansive clays. Acta Geotech. (2023). https://doi.org/10.1007/s11440-023-02140-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11440-023-02140-8

Keywords

Navigation