Skip to main content
Log in

Effect of initial void ratio on the tensile strength of unsaturated silty soils

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The tensile strength of unsaturated soils is a fundamental property in various geotechnical designs. Reliable estimation of the tensile strength of unsaturated soils, in particular fine-grained soils, is required in both theoretical research and engineering practice. Although several tensile strength models have been proposed in the literature, an overestimation may occur over a wide suction range, when applying them in the modelling of tensile strength of fine-grained soils. In this paper, the tensile strength of an unsaturated lean clay has been measured over a wide range of void ratio and water content by employing the Brazilian tensile strength test. A critical degree of saturation can be observed for specimens with different void ratios, at which the soil tensile strength reaches the peak. In addition, a predictive tensile strength model considering the effect of initial void ratio has been subsequently proposed for both coarse-grained and fine-grained unsaturated soils based on the interaction mechanisms between the adsorptive and capillary soil water. Finally, the proposed model has been demonstrated to be capable of modelling the tensile strength characteristic curve of various soil types ranging from clean sands to silty and clayey soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. ASTM D2487-11 (2006) Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM International, West Conshohocken

  2. Akin ID, Likos WJ (2017) Brazilian tensile strength testing of compacted clay. Geotech Test J 40(4):608–617. https://doi.org/10.1520/GTJ20160180

    Article  Google Scholar 

  3. Baker R, Frydman S (2009) Unsaturated soil mechanics: critical review of physical foundations. Eng Geol 106(1–2):26–39. https://doi.org/10.1016/j.enggeo.2009.02.010

    Article  Google Scholar 

  4. Bao YD, Li YC, Zhang YS, Yan JH, Zhou X, Zhang XD (2022) Investigation of the role of crown crack in cohesive soil slope and its effect on slope stability based on the extended finite element method. Nat Hazards 110:295–314. https://doi.org/10.1007/s11069-021-04947-8

    Article  Google Scholar 

  5. Beckett CTS, Smith JC, Ciancio D, Augarde CE (2015) Tensile strengths of flocculated compacted unsaturated soils. Geotech Lett 5(4):254–260. https://doi.org/10.1680/jgele.15.00087

    Article  Google Scholar 

  6. Birle E, Heyer D, Vogt N (2008) Influence of the initial water content and dry density on the soil-water retention curve and the shrinkage behavior of a compacted clay. Acta Geotech 3(3):191–200. https://doi.org/10.1007/s11440-008-0059-y

    Article  Google Scholar 

  7. Bulolo S, Leong EC, Kizza R (2021) Tensile strength of unsaturated coarse and fine-grained soils. B Eng Geol Environ 80(3):2727–2750. https://doi.org/10.1007/s10064-020-02073-6

    Article  Google Scholar 

  8. Cai GQ, Shi PX, Kong XA, Zhao CG, Likos W (2020) Experimental study on tensile strength of unsaturated fine sands. Acta Geotech 15(5):1057–1106. https://doi.org/10.1007/s11440-019-00807-9

    Article  Google Scholar 

  9. Cai GQ, Zhou AN, Liu Y, Xu RZ, Zhao CG (2020) Soil water retention behavior and microstructure evolution of lateritic soil in the suction range of 0–286.7 MPa. Acta Geotech 15(1):3327–3341. https://doi.org/10.1007/s11440-020-01011-w

    Article  Google Scholar 

  10. Chen B, Peng F, Zhang L, Sun DA (2023) Investigation on swelling characteristics of GMZ bentonite with different initial water contents. Ann Nucl Energy 181:109565. https://doi.org/10.1016/j.anucene.2022.109565

    Article  Google Scholar 

  11. Das BM, Yen SC, Dass RN (2015) Brazilian tensile strength test of lightly cemented sand. Can Geotech J 32(1):166–171

    Article  Google Scholar 

  12. Fredlund DG, Rahardjo H (1993) Soil mechanics for unsaturated soils. Wiley, New York

    Book  Google Scholar 

  13. Fredlund DG, Xing A (1994) Equation for the soil-water characteristic curve. Can Geotech J 31(4):521–532

    Article  Google Scholar 

  14. Gallipoli D (2012) A hysteretic soil-water retention model accounting for cyclic variations of suction and void ratio. Geotechnique 62(7):605–616. https://doi.org/10.1680/geot.11.P.007

    Article  Google Scholar 

  15. Gallipoli D, Wheeler SJ, Karstunen M (2003) Modelling the variation of degree of saturation in a deformable unsaturated soil. Geotechnique 53(1):105–112. https://doi.org/10.1680/geot.2003.53.1.105

    Article  Google Scholar 

  16. Gao Y, Li Z, Sun DA, Yu HH (2021) A simple method for predicting the hydraulic properties of unsaturated soils with different void ratios. Soil Till Res 209:104913. https://doi.org/10.1016/j.still.2020.104913

    Article  Google Scholar 

  17. Gao Y, Sun DA (2017) Soil-water retention behavior of compacted soil with different densities over a wide suction range and its prediction. Comput Geotech 91:17–26. https://doi.org/10.1016/j.compgeo.2017.06.016

    Article  Google Scholar 

  18. Gao Y, Sun DA, Zhou AN, Li J (2020) Predicting shear strength of unsaturated soils over wide suction range. Int J Geomech 20(2):04019175. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001555

    Article  Google Scholar 

  19. Gao Y, Sun DA, Zhu ZC, Xu YF (2019) Hydromechanical behavior of unsaturated soil with different initial densities over a wide suction range. Acta Geotech 14(2):417–428. https://doi.org/10.1007/s11440-018-0662-5

    Article  Google Scholar 

  20. Khlosi M, Cornelis WM, Douaik A, Van Genuchten MT, Gabriels D (2008) Performance evaluation of models that describe the soil water retention curve between saturation and oven dryness. Vadose Zone J 7(1):87–96. https://doi.org/10.2136/vzj20070099

    Article  Google Scholar 

  21. Kim TH, Hwang C (2003) Modeling of tensile strength on moist granular earth material at low water content. Eng Geol 69(3–4):233–244. https://doi.org/10.1016/S0013-7952(02)00284-3

    Article  Google Scholar 

  22. Kim TH, Kang GC, Ge L (2012) Factors influencing crack-induced tensile strength of compacted soil. J Mater Civ Eng 24(3):315–320. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000380

    Article  Google Scholar 

  23. Kim TH, Sture S (2008) Capillary-induced tensile strength in unsaturated sands. Can Geotech J 45(5):726–737. https://doi.org/10.1139/T08-017

    Article  Google Scholar 

  24. Konrad JM, Lebeau M (2015) Capillary-based effective stress formulation for predicting shear strength of unsaturated soils. Can Geotech J 52(12):2067–2076. https://doi.org/10.1139/cgj-2014-0300

    Article  Google Scholar 

  25. Lee IM, Sung SG, Cho GC (2005) Effect of stress state on the unsaturated shear strength of a weathered granite. Can Geotech J 42(2):624–631. https://doi.org/10.1139/t04-091

    Article  Google Scholar 

  26. Li HD, Tang CS, Cheng Q, Li SJ, Gong XP, Shi B (2019) Tensile strength of clayey soil and the strain analysis based on image processing techniques. Eng Geol 253(10):137–148. https://doi.org/10.1016/j.enggeo.2019.03.017

    Article  Google Scholar 

  27. Liang QG, Wu XY, Li CQ, Wang LL (2014) Mechanical analysis using the unconfined penetration test on the tensile strength of Q3 loess around Lanzhou City, China. Eng Geol 183(9):324–329. https://doi.org/10.1016/j.enggeo.2014.10.016

    Article  Google Scholar 

  28. Lu N (2016) Generalized soil water retention equation for adsorption and capillarity. J Geotech Geoenviron Eng 142(10):04016051. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001524

    Article  Google Scholar 

  29. Lu N, Godt JW, Wu DT (2010) A closed-form equation for effective stress in unsaturated soil. Water Resour Res 46(5):W05515. https://doi.org/10.1029/2009WR008646

    Article  Google Scholar 

  30. Lu N, Khorshidi M (2015) Mechanism for soil-water retention and hysteresis at high suction range. J Geotech Geoenviron Eng 141(8):04015032. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001325

    Article  Google Scholar 

  31. Lu N, Kim TH, Sture S, Likos WJ (2009) Tensile strength of unsaturated sand. J Eng Mech 135(12):1410–1419. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000054

    Article  Google Scholar 

  32. Lu N, Likos WJ (2006) Suction stress characteristic curve for unsaturated soil. J Geotech Geoenviron Eng 132(2):131–142. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131)

    Article  Google Scholar 

  33. Lu N, Wu BL, Tan CP (2007) Tensile strength characteristics of unsaturated sands. J Geotech Geoenviron Eng 133(2):144–154. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(144)

    Article  Google Scholar 

  34. Narvaez B, Aubertin M, Saleh-Mbemba F (2015) Determination of the tensile strength of unsaturated tailings using bending tests. Can Geotech J 52(11):1874–1885. https://doi.org/10.1139/cgj-2014-0156

    Article  Google Scholar 

  35. Revil A, Lu N (2013) Unified water isotherms for clayey porous materials. Water Resour Res 49(9):5685–5699. https://doi.org/10.1139/cgj-2015-0322

    Article  Google Scholar 

  36. Romero E, Gens A, Lloret A (1999) Water permeability, water retention and microstructure of unsaturated compacted Boom clay. Eng Geol 54(1–2):117–127. https://doi.org/10.1016/S0013-7952(99)00067-8

    Article  Google Scholar 

  37. Salimi K, Cerato A, Vahedifard F, Miller GA (2021) General model for the uniaxial tensile strength characteristic curve of unsaturated soils. J Geotech Geoenviron Eng 147(7):04021051. https://doi.org/10.1061/(ASCE)GT.1943-56060002567

    Article  Google Scholar 

  38. Tamrakar SB, Mitachi T, Toyosawa Y (2007) Measurement of soil tensile strength and factors affecting its measurements. Soils Found 47(5):911–918. https://doi.org/10.3208/sandf.47.911

    Article  Google Scholar 

  39. Tang CS, Pei XJ, Wang DY, Shi B, Li J (2015) Tensile strength of compacted clayey soil. J Geotech Geoenviron Eng 141(4):04014122. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001267

    Article  Google Scholar 

  40. Tang LS, Zhao ZL, Luo ZG, Sun YL (2019) What is the role of tensile cracks in cohesive slopes? J Rock Mech Geothch 11(2):314–324. https://doi.org/10.1016/j.jrmge.2018.09.007

    Article  Google Scholar 

  41. Trabelsi H, Romero E, Jamei M (2018) Tensile strength during drying of remoulded and compacted clay: the role of fabric and water retention. Appl Clay Sci 162(15):57–68. https://doi.org/10.1016/j.clay.2018.05.032

    Article  Google Scholar 

  42. Tran KQ, Satomi T, Takahashi H (2019) Tensile behaviors of natural fiber and cement reinforced soil subjected to direct tensile test. J Build Eng 24:100748. https://doi.org/10.1016/j.jobe.2019.100748

    Article  Google Scholar 

  43. Varsei M, Miller GA, Hassanikhah A (2016) Novel approach to measuring tensile strength of compacted clayey soil during desiccation. Int J Geomech 16(6):D4016011. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000705

    Article  Google Scholar 

  44. Wang JP, François B, Lambert P (2020) From basic particle gradation parameters to water retention curves and tensile strength of unsaturated granular soils. Int J Geomech 26(6):1–10. https://doi.org/10.1061/(ASCE)GM.1943-56220001677

    Article  Google Scholar 

  45. Yin PH, Vanapalli SK (2018) Model for predicting tensile strength of unsaturated cohesionless soils. Can Geotech J 55(9):1313–1333. https://doi.org/10.1139/cgj-2017-0376

    Article  Google Scholar 

  46. Zhai Q, Rahardjo H, Satyanaga A, Dai GL (2020) Estimation of tensile strength of sandy soil from soil-water characteristic curve. Acta Geotech 15(12):3371–3381. https://doi.org/10.1007/s11440-020-01013-8

    Article  Google Scholar 

  47. Zhang C, Lu N (2020) Unified effective stress equation for soil. J Eng Mech 146(2):04019135. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001718

    Article  Google Scholar 

  48. Zhang JR, Niu G, Li XC, Sun DA (2020) Hydro-mechanical behavior of expansive soils with different dry densities over a wide suction range. Acta Geotech 15(1):265–278. https://doi.org/10.1007/s11440-019-00874-y

    Article  Google Scholar 

  49. Zhou AN, Huang RQ, Sheng DC (2016) Capillary water retention curve and shear strength of unsaturated soils. Can Geotech J 141(8):04015032. https://doi.org/10.1139/cgj-2015-0322

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude for the grants provided by the National Natural Science Foundation of China (Nos. 42272312, 52238007 and 41902279), the Fundamental Research Funds for the Provincial Universities of Zhejiang (SJLY2022007), and Guangxi Key Laboratory of Geomechanics and Geotechnical Engineering (20YKF06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjie Cui or De’an Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Li, Z., Cui, W. et al. Effect of initial void ratio on the tensile strength of unsaturated silty soils. Acta Geotech. 18, 3609–3622 (2023). https://doi.org/10.1007/s11440-023-01800-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-023-01800-z

Keywords

Navigation