Skip to main content
Log in

Measuring the evolution of contact fabric in shear bands with X-ray tomography

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Numerous studies have shown that the fabric of granular materials plays a fundamental role in its macroscopic behaviour. Due to technical limitations, this fabric remained inaccessible in real experiments until recently when X-ray tomography became accessible. However, determining the fabric from tomographic images is relatively challenging, due to various inherent imaging properties. Triaxial experiments on natural sands are chosen to investigate the contact fabric evolution. Two different observation windows in the specimen are chosen for the contact fabric analysis: one inside and another one outside a shear band. Individual contact orientations are measured using advanced image analysis approaches within these windows. The fabric is then statistically captured using a second-order tensor, and the evolution of its anisotropy is related to the macroscopic behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Two geometrical entities that can be determined accurately.

  2. An 8-bit image has 0–255 values.

  3. In this experimental set-up, the bottom platen moves upwards to induce shear.

References

  1. Andò E (2013) Experimental investigation of microstructural changes in deforming granular media using X-ray tomography. Ph.D. thesis, Université de Grenoble

  2. Andò E, Hall SA, Viggiani G, Desrues J, Bésuelle P (2012) Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach. Acta Geotech. https://doi.org/10.1007/s11440-011-0151-6

    Article  Google Scholar 

  3. Andò E, Hall SA, Viggiani G (2012) Experimental micromechanics: grain-scale observation of sand deformation. Géotech Lett 2:107

    Article  Google Scholar 

  4. Andò E, Viggiani G, Hall SA, Desrues J (2013) Experimental micro-mechanics of granular media studied by X-ray tomography: recent results and challenges. Géotech Lett 3:142. https://doi.org/10.1680/geolett.13.00036

    Article  Google Scholar 

  5. Aste T, Saadatfar M, Senden TJ (2005) Geometrical structure of disordered sphere packings. Phys Rev E 71:061302. https://doi.org/10.1016/j.physa.2004.03.034

    Article  Google Scholar 

  6. Calvetti F, Combe G, Lanier J (1997) Experimental micromechanical analysis of a 2d granular material: relation between structure evolution and loading path. Mech Cohesive Frict Mater 2(2):121. https://doi.org/10.1002/(SICI)1099-1484(199704)2:2<121::AID-CFM27>3.0.CO;2-2

    Article  Google Scholar 

  7. Cnudde V, Boone MN (2013) High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth Sci Rev 123:1. https://doi.org/10.1016/j.earscirev.2013.04.003

    Article  Google Scholar 

  8. Cundall Pa, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47. https://doi.org/10.1680/geot.1980.30.3.331

    Article  Google Scholar 

  9. Delaney GW, Di Matteo T, Aste T (2010) Combining tomographic imaging and DEM simulations to investigate the structure of experimental sphere packings. Soft Matter 6:2992. https://doi.org/10.1039/b927490a

    Article  Google Scholar 

  10. Desrues J, Andò E (2015) Strain localisation in granular media. C R Phys 16(1):26. https://doi.org/10.1016/j.crhy.2015.01.001

    Article  Google Scholar 

  11. Desrues J, Chambon R, Mokni M, Mazerolle F (1996) Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Géotechnique 46(3):529

    Article  Google Scholar 

  12. Dobry R, Ng TT (1992) Discrete modelling of stress–strain behaviour of granular media at small and large strains. Eng Comput 9:129. https://doi.org/10.1108/02644401211227635

    Article  Google Scholar 

  13. Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1(6):612. https://doi.org/10.1364/JOSAA.1.000612

    Article  Google Scholar 

  14. Fonseca J, O’Sullivan C, Coop M, Lee P (2013) Quantifying the evolution of soil fabric during shearing using directional parameters. Géotechnique 63(6):487. https://doi.org/10.1680/geot.12.P.003

    Article  Google Scholar 

  15. Fonseca J, Nadimi S, Reyes-Aldasoro C, O’Sullivan C, Coop M (2016) Image-based investigation into the primary fabric of stress-transmitting particles in sand. Soils Found 56(5):818. https://doi.org/10.1016/j.sandf.2016.08.007

    Article  Google Scholar 

  16. Fu P, Dafalias Y (2011) Fabric evolution within shear bands of granular materials and its relation to critical state theory. Int J Numer Anal Methods Geomech 35(18):1918. https://doi.org/10.1002/nag

    Article  Google Scholar 

  17. Grady L (2006) Random walks for image segmentation. In: IEEE transactions on pattern analysis and machine intelligence, vol 28

    Article  Google Scholar 

  18. Gu X, Hu J, Huang M (2017) Anisotropy of elasticity and fabric of granular soils. Granul Matter 19(2):1. https://doi.org/10.1007/s10035-017-0717-6

    Article  Google Scholar 

  19. Hall SA, Bornert M, Desrues J, Pannier Y, Lenoir N, Viggiani G, Bésuelle P (2010) Discrete and continuum analysis of localised deformation in sand using X-ray \(\mu \)CT and volumetric digital image correlation. Géotechnique 60(5):315. https://doi.org/10.1680/geot.2010.60.5.315

    Article  Google Scholar 

  20. Imseeh WH, Druckrey AM, Alshibli KA (2018) 3D experimental quantification of fabric and fabric evolution of sheared granular materials using synchrotron micro-computed tomography. Granul Matter. https://doi.org/10.1007/s10035-018-0798-x

    Article  Google Scholar 

  21. Iwashita K, Oda M (2000) Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol 109:192

    Article  Google Scholar 

  22. Jaquet C, Andó E, Viggiani G, Talbot H (2013) Estimation of separating planes between touching 3D objects using power watershed. In: International symposium on mathematical morphology, vol 11, pp 452–463

    Google Scholar 

  23. Kanatani KI (1984) Distribution of directional data and fabric tensors. Int J Eng Sci 22(2):149

    Article  MathSciNet  Google Scholar 

  24. Kawamoto R, Andò E, Viggiani G, Andrade JE (2016) Level set discrete element method for three-dimensional computations with triaxial case study. J Mech Phys Solids 91:1. https://doi.org/10.1016/j.jmps.2016.02.021

    Article  MathSciNet  Google Scholar 

  25. Kawamoto R, Andò E, Viggiani G, Andrade JE (2017) All you need is shape: predicting shear banding in sand with LS-DEM. J Mech Phys Solids 111:375. https://doi.org/10.1016/j.jmps.2017.10.003

    Article  Google Scholar 

  26. Lebigot EO (2010) Uncertainties: a python package for calculations with uncertainties. http://pythonhosted.org/uncertainties/

  27. Meyer F (1994) Topographic distance and watershed lines. Signal Process 38(1):113

    Article  Google Scholar 

  28. Oda M (1972) Initial fabrics and their relations to mechanical properties of granular material. Soils Found 12(1):17–36

    Article  MathSciNet  Google Scholar 

  29. Oda M, Konishi J, Nemat-Nasser S (1980) Some experimentally based fundamental results on the mechanical behaviour of granular materials. Geotechnique 30:479–495

    Article  Google Scholar 

  30. Oda M, Nemat-Nasser S, Konishi J (1985) Stress-induced anisotropy in granular masses. Soils Found 25(3):85

    Article  Google Scholar 

  31. Oda M, Takemura T, Takashi M (2004) Microstructure in shear band observed by microfocus X-ray computed tomography. Géotechnique 54(8):539

    Article  Google Scholar 

  32. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62. https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  33. Thornton C (2000) Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1):43. https://doi.org/10.1680/geot.2000.50.1.43

    Article  Google Scholar 

  34. Tudisco E, Andò E, Cailletaud R, Hall SA (2017) TomoWarp2: a local digital volume correlation code. SoftwareX 6:267. https://doi.org/10.1016/j.softx.2017.10.002

    Article  Google Scholar 

  35. Viggiani G, Andò E, Takano D, Santamarina J (2014) Laboratory X-ray tomography: a valuable experimental tool for revealing processes in soils. Geotech Test J 38(1):61. https://doi.org/10.1520/GTJ20140060

    Article  Google Scholar 

  36. Vlahinić I, Andò E, Viggiani G, Andrade JE (2013) Towards a more accurate characterization of granular media: extracting quantitative descriptors from tomographic images. Granul Matter 16(1):9. https://doi.org/10.1007/s10035-013-0460-6

    Article  Google Scholar 

  37. Weis S, Schröter M (2017) Analyzing X-ray tomographies of granular packings. Rev Sci Instrum 88:051809. https://doi.org/10.1063/1.4983051

    Article  Google Scholar 

  38. Wiebicke M, Andò E, Herle I, Viggiani G (2017) On the metrology of interparticle contacts in sand from X-ray tomography images. Meas Sci Technol 28(12):124007. https://doi.org/10.1088/1361-6501/aa8dbf

    Article  Google Scholar 

  39. Wiebicke M, Andò E, Šmilauer V, Herle I, Viggiani G (2019) A benchmark strategy for the experimental measurement of contact fabric. Granul Matter 21:54

    Article  Google Scholar 

  40. Wiendieck K (1967) Zur Struktur körniger Medien. Die Bautechnik 6:196

    Google Scholar 

Download references

Acknowledgements

Laboratoire 3SR is part of the LabEx Tec 21 (Investissements d’Avenir—Grant Agreement No. ANR-11-LABX-0030). We thank the Center for Information Services and High Performance Computing (ZIH) at TU Dresden for generous allocations of computational resources. We thank Yannis F. Dafalias for inspiring this work.

Funding

The research leading to these results has received funding from the German Research Foundation (DFG) no. HE2933/8-1 and from the European Research Council under the European Union’s Seventh Framework Program FP7-ERC-IDEAS Advanced Grant Agreement No. 290963 (SOMEF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Wiebicke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiebicke, M., Andò, E., Viggiani, G. et al. Measuring the evolution of contact fabric in shear bands with X-ray tomography. Acta Geotech. 15, 79–93 (2020). https://doi.org/10.1007/s11440-019-00869-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-019-00869-9

Keywords

Navigation