Skip to main content
Log in

Towards a more accurate characterization of granular media: extracting quantitative descriptors from tomographic images

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Imaging, epitomized by computed tomography, continues to provide unprecedented 3D access to granular microstructures at ever-greater resolutions. The non-destructive technique has enabled deep insight into the morphology and behavior of granular materials, in situ and as a function of macroscopic states, e.g., loads. However, a significant bottleneck in this paradigm is that it ultimately yields qualitative ‘pictures’ of microstructure. Hence, a major challenge is to extract quantitative descriptors of grain-scale processes, e.g., morphological description of particles, kinematics, and spatial interactions. Existing methods, including watershed and burn algorithms, are plagued with limitations related to image resolution and with the inability to sharply identify grain-to-grain contact regions, which is crucial for studying force transmission and strength in granular materials. In this work, we propose a method to overcome these drawbacks. Specifically, a novel way to extract grain topology in particulate materials via level sets is introduced. It is shown that the proposed method can sharply resolve the topology of grain surfaces near to and far from grain-to-grain contact regions with sub-voxel resolution, and is capable of grain extraction directly in three dimensions. The proposed method still relies on traditional techniques for input, but ultimately leads to much improved grain characterization. We validate the approach using three dimensional CT images of highly rounded (Caicos ooid) and highly angular (Hostun sand) natural materials, with excellent results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. To provide a sense of scale, the images utilized in this work contain roughly one particle for every 8,000 greyscale voxels of data.

  2. Recall that our proposed technique ultimately yields one level set function for each grain, i.e., a scalar value for each node on a regular Eulerian grid. A zero contour of this function describes the surface of a chosen grain.

References

  1. Alshibli, K.A., Reed, A.H. (eds.): Advances in Computed Tomography for Geomaterials. Wiley, New Orleans, USA (2010). doi:10.1002/9781118557723

  2. Andò, E., Hall, S., Desrues, J., Viggiani, G., Bésuelle, P.: Experimental micromechanics: grain-scale observation of sand deformation. Géotech. Lett. (2012a). Accepted

  3. Andò, E., Hall, S., Viggiani, G., Desrues, J., Bésuelle, P.: Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach. Acta Geotech. 7, 1–13 (2012b). doi:10.1007/s11440-011-0151-6

    Article  Google Scholar 

  4. Andrade, J.E., Tu, X.: Multiscale framework for behavior prediction in granular media. Mech. Mater. 41(6), 652–669 (2009)

    Article  Google Scholar 

  5. Andrade, J.E., Avila, C.F., Hall, S.A., Lenoir, N., Viggiani, G.: Multiscale modeling and characterization of granular matter: from grain kinematics to continuum mechanics. J. Mech. Phys. Solids 59, 237–250 (2010)

    Article  ADS  Google Scholar 

  6. Andrade, J.E., Lim, K.-W., Avila, C.F., Vlahinić, I.: Granular element method for computational particle mechanics. Comput. Methods Appl. Mech. Eng. 241, 262–274 (2012). doi:10.1016/j.cma.2012.06.012

    Article  ADS  Google Scholar 

  7. Andrade, J.E., Vlahinić, I., Lim, K.-W., Jerves, A.: Multiscale tomography-to-simulation framework for granular matter: the road ahead. Géotech. Lett. 2, 135–139 (2012b). doi:10.1680/geolett.12.00023

    Article  Google Scholar 

  8. Brox, T., Kleinschmidt, O., Cremers, D.: Efficient nonlocal means for denoising of textural patterns. IEEE Trans. Image Process 17, 1083–1092 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. Buades, A., Coll, B., Morel, J.-M.: A review of image denoising methods, with a new one. Multiscale Model. Simul. 4, 490–530 (2005). doi:10.1007/s11263-007-0052-1

    Article  MATH  MathSciNet  Google Scholar 

  10. Buades, A., Coll, B., Morel, J.-M.: Nonlocal image and movie denoising. Int. J. Comput. Vis. 76, 123–139 (2008). doi:10.1007/s11263-007-0052-1

    Article  Google Scholar 

  11. Calvetti, F., Combe, G., Lanier, J.: Experimental micromechanical analysis of 2d granular material: relation between structure evolution and loading path. Mech. Cohesive-Frict. Mater. 2, 121–163 (1997)

    Article  Google Scholar 

  12. Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66, 1–31 (1993). doi:10.1007/bf01385685

    Article  MATH  MathSciNet  Google Scholar 

  13. Chatterjee, P., Milanfar, P.: A generalization of non-local means via kernel regression. In: Proceedings of Computational Imaging (2008)

  14. Coupe, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise nonlocal means denoising filter for 3-d magnetic resonance images. IEEE Trans. Med. Imaging 27, 421–441 (2008). doi:10.1109/tmi.2007.906087

    Article  Google Scholar 

  15. Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: integrating color, texture, motion, and shape. Int. J. Comput. Vis. 72, 195–215 (2007). doi:10.1007/s11263-006-8711-1

    Article  Google Scholar 

  16. Desrues, J., Viggiani, G., Bésuelle, P. (eds.): Advances in X-ray Tomography for Geomaterials, 1st edition. Wiley-ISTE, 2006. doi:10.1002/9780470612187

  17. Desrues, J., Viggiani, G.: Strain localization in sand: an overview of the experimental results obtained in grenoble using stereophotogrammetry. Int. J. Numer. Anal. Methods Geomech. 28, 279–321 (2004)

    Article  Google Scholar 

  18. Flavigny, E., Desrues, J., Palayer, B.: Note technique le sable d’hostun rf. Rev. Franc. Géotech. 53(53), 67–70 (1990)

    Google Scholar 

  19. Gao, H., Chae, O.: Individual tooth segmentation from ct images using level set method with shape and intensity prior. Pattern Recognit. 43, 2406–2417 (2010). doi:10.1016/j.patcog.2010.01.010

    Article  Google Scholar 

  20. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall, Upper Saddle River (2008)

    Google Scholar 

  21. Goossens, B., Luong, H., Pizurica, A., Philips, W.: An improved non-local denoising algorithm. In: Proceedings International Workshop on Local and Non-Local Approximation in Image Processing (LNLA) (2008)

  22. Hasan, A., Alshibli, K.: Three dimensional fabric evolution of sheared sand. Granul. Matter 14, 469–482 (2012). doi:10.1007/s10035-012-0353-0

    Article  Google Scholar 

  23. Hladuvka, J., König, A., Gröller, E.: Exploiting eigenvalues of the hessian matrix for volume decimation. In: 9th International Conference on Computer Graphics, Visualization, and Computer Vision (WSCG), pp. 124–129 (2001)

  24. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Conformal curvature flows: from phase transitions to active vision. Arch. Ration. Mech. Anal. 134, 275–301 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. In Proceedings of IEEE, Image Processing, pp. 3243–3254 (2010)

  26. Li, C., Xu, C., Gui, C., Fox, M.D.: Level set evolution without re-initialization: a new variational formulation. In: Proceedings of IEEE, Computer Vision and Pattern Recognition, pp. 430–436 (2005)

  27. Li, X., Dafalias, Y.: Anisotropic critical state theory: role of fabric. J. Eng. Mech. 138, 263–275 (2012). doi:10.1061/(ASCE)EM.1943-7889.0000324

    Google Scholar 

  28. Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079–1082 (2005). doi:10.1038/nature03805

    Google Scholar 

  29. Oda, M., Iwashita, K.: Mechanics Granular Materials, An Introduction, 1st edn. Balkema, Rotterdam, Netherlands (1999)

  30. Osher, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces, 1st edition. Springer, Berlin (2002)

  31. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Pratt, W.K.: Digital Image Processing, 4th edn. Wiley, Los Altos (2007)

    Book  Google Scholar 

  33. Rechemacher, A., Finno, R.: Digital image correlation to evaluate shear banding in dilative sands. Geotech. Test. J. 27, 13–22 (2004)

    Google Scholar 

  34. Santamarina, J.C.: Soil behavior at the microscale: particle forces. In: Proceedings of ASCE, Soil Behavior and Soft Ground, Construction, pp. 25–56 (2003). doi:10.1061/40659(2003)2

  35. Sheppard, A.P., Sok, R.M., Averdunk, H.: Techniques for image enhancement and segmentation of tomographic images of porous materials. Phys. A: Stat. Mech. Appl. 339(1–2), 145–151 (2004). doi:10.1016/j.physa.2004.03.057

    Article  Google Scholar 

  36. Soille, P.: Morphological Image Analysis, Principles and Applications, 2nd edn. Springer, Berlin (2004)

    Book  Google Scholar 

  37. Sun, W., Andrade, J.E., Rudnicki, J.W., Eichhubl, P.: Connecting microstructural attributes and permeability from 3d tomographic images of in situ shear-enhanced compaction bands using multiscale computations. Geophys. Res. Lett. 38, L10302 (2011a). doi:10.1029/2011GL047683

    Article  ADS  Google Scholar 

  38. Sun, W.-C., Andrade, J.E., Rudnicki, J.W.: Multiscale method for characterization of porous microstructures and their impact on macroscopic effective permeability. J. Numer. Methods Eng. 88, 1260–1279 (2011b)

    Article  MATH  MathSciNet  Google Scholar 

  39. Thompson, K.E., Willson, C.S., Zhang, W.: Quantitative computer reconstruction of particulate materials from microtomography images. Powder Technol. 163(3), 169–182 (2006). doi:10.1016/j.powtec.2005.12.016

    Article  Google Scholar 

  40. Vavrik, D., Soukup, P.: Metal grain structure resolved with table-top micro-tomographic system. J. Instrum. 6, C11034 (2011). doi:10.1088/1748-0221/6/11/C11034

    Article  Google Scholar 

  41. Vlahinić, I., Andrade, J.E., Andò, E., Viggiani, G.: From 3d tomography to physics-based mechanics of geomaterials. In: Proceedings of ASCE, International Workshop in Computing in Civil Engineering, pp. 339–345, Los Angeles, U.S. (2013)

  42. White, J.A., Borja, R.I., Fredrich, J.T.: Calculating the effective permeability of sandstone with multiscale lattice boltzmann/finite element simulations. Acta Geotech. 1, 195–209 (2006)

    Article  Google Scholar 

  43. Zhao, H., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127, 179–195 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported in part by W.M. Keck Institute for Space Studies. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Andrade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlahinić, I., Andò, E., Viggiani, G. et al. Towards a more accurate characterization of granular media: extracting quantitative descriptors from tomographic images. Granular Matter 16, 9–21 (2014). https://doi.org/10.1007/s10035-013-0460-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0460-6

Keywords

Navigation