Skip to main content
Log in

The effect of nitrogen annealing on lithium ion intercalation in nickel-doped lithium trivanadate

  • Article
  • Engineering Sciences
  • Published:
Science Bulletin

Abstract

The communication reports an exploratory experimental study on the effects of nitrogen annealing on lithium ion intercalation in nickel-doped lithium trivanadate cathodic electrodes for lithium ion batteries. It shows good rate performance with discharge capacities of 348.6, 252.6, 191.9 and 96.7 mAh g−1 at 0.2, 0.5, 1 and 5 C, respectively. Nitrogen annealing resulted in the formation of parasitic secondary-phase LiV2O5 and appreciably increased tetravalent vanadium ions compensated with oxygen vacancies, which would enhance the electronic conductivity and lithium ion diffusivity and promote the interface interaction and deintercalation process, and thus lead to the enhanced lithium ion intercalation properties. The possible impacts of the parasitic secondary-phase LiV2O5 on the lithium ion intercalation performance have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yoo HD, Markevich E, Salitra G et al (2014) On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater Today 17:110–121

    Article  Google Scholar 

  2. Masse R, Uchaker E, Cao GZ (2015) Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries. Sci China Mater 58:715–766

    Article  Google Scholar 

  3. Liu CF, Neale ZG, Cao GZ (2015) Understanding the electrochemical potential of electrodes in rechargeable batteries. Mater Today. doi:10.1016/j.mattod.2015.10.009

    Google Scholar 

  4. Wadsley AD (1957) Crystal chemistry of non-stoichiometric pentavalent vanadium oxides—crystal structure of Li1+x V3O8. Acta Crystallogr 10:261–267

    Article  Google Scholar 

  5. Pistoia G, Pasquali M, Wang G et al (1990) Li/Li1+x V3O8 secondary batteries—synthesis and characterization of an amorphous form of the cathode. J Electrochem Soc 137:2365–2370

    Article  Google Scholar 

  6. Zhang HL, Neilson JR, Morse DE (2010) Vapor-diffusion-controlled sol–gel synthesis of flaky lithium vanadium oxide and its electrochemical behavior. J Phys Chem C 114:19550–19555

    Article  Google Scholar 

  7. Li Y, Fu ZY, Su BL (2012) Hierarchically structured porous materials for energy conversion and storage. Adv Funct Mater 22:4634–4667

    Article  Google Scholar 

  8. Mai LQ, Xu X, Xu L et al (2011) Vanadium oxide nanowires for Li-ion batteries. J Mater Res 26:2175–2185

    Article  Google Scholar 

  9. Whittingham MS (2008) Inorganic nanomaterials for batteries. Dalton Trans 40:5424–5431

    Article  Google Scholar 

  10. Wang Y, Wang Y, Hosono E et al (2008) The design of a LiFePO4/carbon nanocomposite with a core–shell structure and its synthesis by an in situ polymerization restriction method. Angew Chem Int Ed 120:7571–7575

    Article  Google Scholar 

  11. Jouanneau S, La Salle AL, Verbaere A et al (2005) The origin of capacity fading upon lithium cycling in Li1.1V3O8. J Electrochem Soc 152:A1660–A1667

    Article  Google Scholar 

  12. Qiu Q, Huang X, Chen YM et al (2014) Al2O3 coated LiNi1/3Co1/3Mn1/3O2 cathode material by sol–gel method: preparation and characterization. Ceram Int 40:10511–10516

    Article  Google Scholar 

  13. Lee JH, Lee JK, Yoon WY (2013) Electrochemical analysis of the effect of Cr coating the LiV3O8 cathode in a lithium ion battery with a lithium powder anode. ACS Appl Mater Inter 5:7058–7064

    Article  Google Scholar 

  14. Shin J, Jung H, Kim Y et al (2014) Carbon-coated V2O5 nanoparticles with enhanced electrochemical performance as a cathode material for lithium ion batteries. J Alloy Compd 589:322–329

    Article  Google Scholar 

  15. Song HQ, Liu YG, Zhang CP et al (2015) Mo-doped LiV3O8 nanorod-assembled nanosheets as a high performance cathode material for lithium ion batteries. J Mater Chem A 3:3547–3558

    Article  Google Scholar 

  16. Liu YG, Song HQ, Zhang CP et al (2015) Nickel-doped lithium trivanadate nanosheets synthesized by hydrothermal synthesis as high performance cathode materials for lithium ion batteries. Sci Adv Mater. doi:10.1166/sam.2015.2644

    Google Scholar 

  17. Zhang QF, Candelaria SL, Uchaker E et al (2013) Nanostructured materials for energy conversion and storage. Chem Soc Rev 42:3127–3171

    Article  Google Scholar 

  18. Song L, Yang S, Wei W et al (2015) Hierarchical SnO2 nanoflowers assembled by atomic thickness nanosheets as anode material for lithium ion battery. Sci Bull 60:892–895

    Article  Google Scholar 

  19. Liu D, Liu Y, Garcia BB (2009) V2O5 xerogel electrodes with much enhanced lithium-ion intercalation properties with N2 annealing. J Mater Chem 19:8789–8795

    Article  Google Scholar 

  20. Liu DW, Liu YY, Pan AQ et al (2011) Enhanced lithium-ion intercalation properties of V2O5 xerogel electrodes with surface defects. J Phys Chem C 115:4959–4965

    Article  Google Scholar 

  21. Swider-Lyons KE, Love CT, Rolison DR (2002) Improved lithium capacity of defective V2O5 materials. Solid State Ionics 152:99–104

    Article  Google Scholar 

  22. Ganduglia-Pirovano MV, Sauer J (2004) Stability of reduced V2O5 (001) surfaces. Phys Rev B 70:045422

    Article  Google Scholar 

  23. Subramanian V, Zhu HW, Wei BQ (2006) High rate reversibility anode materials of lithium batteries from vapor-grown carbon nanofibers. J Phys Chem B 110:7178–7183

    Article  Google Scholar 

  24. Wu QH, Thissen A, Jaegermann W et al (2004) Photoelectron spectroscopy study of oxygen vacancy on vanadium oxides surface. Appl Surf Sci 236:473–478

    Article  Google Scholar 

  25. Li ZY, Wu QH (2008) The effects of oxygen vacancies on the electronic properties of V2O5–x . J Mater Sci Mater Electron 19:S366–S370

    Article  Google Scholar 

  26. Pan AQ, Zhang JG, Cao GZ et al (2011) Nanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium batteries. J Mater Chem 21:10077–10084

    Article  Google Scholar 

  27. Pan AQ, Wu HB, Yu L et al (2012) Synthesis of hierarchical three-dimensional vanadium oxide microstructures as high-capacity cathode materials for lithium-ion batteries. ACS Appl Mater Interface 4:3874–3879

    Article  Google Scholar 

  28. Pan AQ, Liu J, Zhang JG et al (2011) Template free synthesis of LiV3O8 nanorods as a cathode material for high-rate secondary lithium batteries. J Mater Chem 21:1153–1161

    Article  Google Scholar 

  29. Liu YM, Zhou XC, Guo YL (2008) Effects of reactant dispersion on the structure and electrochemical performance of Li1.2V3O8. J Power Sources 184:303–307

    Article  Google Scholar 

  30. Wang WJ, Wang HY, Liu SQ et al (2012) Synthesis of gamma-LiV2O5 nanorods as a high-performance cathode for Li ion battery. J Solid State Electronchem 16:2555–2561

    Article  Google Scholar 

  31. Zheng YZ, Ding HY, Uchaker E (2015) Nickel-mediated polyol synthesis of hierarchical V2O5 hollow microspheres with enhanced lithium storage properties. J Mater Chem A 3:1979–1985

    Article  Google Scholar 

  32. Sawatzky GA, Post D (1979) X-ray photoelectron and auger-spectroscopy study of some vanadium-oxides. Phys Rev B 20:1546–1555

    Article  Google Scholar 

  33. Feng Y, Li YL, Hou F (2009) Boron doped lithium trivanadate as a cathode material for an enhanced rechargeable lithium ion batteries. J Power Sources 187:224–228

    Article  Google Scholar 

  34. Sarkar S, Banda H, Mitra S (2013) High capacity lithium-ion battery cathode using LiV3O8 nanorods. Electrochim Acta 99:242–252

    Article  Google Scholar 

  35. Xu X, Luo YZ, Mai LQ et al (2012) Topotactically synthesized ultralong LiV3O8 nanowire cathode materials for high-rate and long-life rechargeable lithium batteries. Npg Asia Mater 4:e20

    Article  Google Scholar 

  36. Kawakita J, Katayama Y, Miura T et al (1998) Structural properties of Li1+x V3O8 upon lithium insertion at ambient and high temperature. Solid State Ionics 107:145–152

    Article  Google Scholar 

  37. Kawakita J, Miura T, Kishi T (1999) Charging characteristics of Li1+x V3O8. Solid State Ionics 118:141–147

    Article  Google Scholar 

  38. Kawakita J, Miura T, Kishi T (1999) Lithium insertion and extraction kinetics of Li1+x V3O8. J Power Sources 83:79–83

    Article  Google Scholar 

  39. Sun D, Xu G, Wang H et al (2015) Multi-layered Al2O3/Li x V2O5/LiV3O8 nanoflakes with superior cycling stability as cathode material for Li-ion battery. Electrochim Acta 157:211–217

    Article  Google Scholar 

  40. Sun D, Jin G, Wang H et al (2014) Li x V2O5/LiV3O8 nanoflakes with significantly improved electrochemical performance for Li-ion batteries. J Mater Chem A 2:8009–8016

    Article  Google Scholar 

  41. Wang HY, Huang KL, Ren Y et al (2011) NH4V3O8/carbon nanotubes composite cathode material with high capacity and good rate capability. J Power Sources 196:9786–9791

    Article  Google Scholar 

  42. Kang YJ, Kim JH, Lee SW et al (2005) The effect of Al(OH)3 coating on the Li[Li0.2Ni0.2Mn0.6]O2 cathode material for lithium secondary battery. Electrochim Acta 50:4784–4791

    Article  Google Scholar 

  43. Idris NH, Rahman MM, Wang JZ et al (2011) Synthesis and electrochemical performance of LiV3O8/carbon nanosheet composite as cathode material for lithium-ion batteries. Compos Sci Technol 71:343–349

    Article  Google Scholar 

  44. Sun YK, Han JM, Myung ST et al (2006) Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cathode. Electrochem Commun 8:821–826

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Thousands Talents” Program for a pioneer researcher and his innovative team, China. This work was also supported by the National Natural Science Foundation of China (51374029) and the National Science Foundation (NSF, DMR-1505902), Program for New Century Excellent Talents in University (NCET-13-0668), Fundamental Research Funds for the Central Universities (FRF-TP-14-008C1) and China Postdoctoral Science Foundation (2015M570988).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozhong Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

SPECIAL TOPIC: Materials for Energy Conversion

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, C., Liu, C. et al. The effect of nitrogen annealing on lithium ion intercalation in nickel-doped lithium trivanadate. Sci. Bull. 61, 587–593 (2016). https://doi.org/10.1007/s11434-015-0970-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0970-1

Keywords

Navigation