Skip to main content
Log in

Synthesis of γ-LiV2O5 nanorods as a high-performance cathode for Li ion battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

One-dimension γ-LiV2O5 nanorods were synthesized using VO2(B) nanorods as precursor in this study. The as-prepared material is characterized by X-ray diffraction, X-ray photoelectron spectrometry, Fourier-transform infrared, transmission electron microscopy (TEM), cyclic voltammetry, and charge–discharge cycling test. TEM results show that LiV2O5 nanorods are 90–250 nm in diameter. The nanorods deliver a maximum discharge capacity of 284.3 mAh g−1 at 15 mA g−1 and 270.2 mAh g−1 is maintained at the 15th cycle. Good rate performance is also observed with the discharge capacity of 250.1 and 202.6 mAh g−1 at 50 and 300 mA g−1, respectively. The capacity retention at 300 mA g−1 is 84.2% over 50 cycles. The Li+ diffusion coefficient of LiV2O5 is calculated to be 10-10–10−9 cm2 s−1. It is demonstrated that the nanorod morphology could greatly facilitate to shorten lithium ion diffusion pathways and increase the contact area between active material and electrolyte, resulting in high capacity and rate performance for LiV2O5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Whittingham MS (2004) Chem Rev 104:4271–4301

    Article  CAS  Google Scholar 

  2. Spahr ME, Novák P, Scheifele W, Haas O, Nesper R (1998) J Electrochem Soc 145(2):421–427

    Article  CAS  Google Scholar 

  3. Wadsley AD (1957) Acta Cryst 10:261–267

    Article  CAS  Google Scholar 

  4. Wang HY, Huang KL, Huang CH, Liu SQ, Ren Y, Huang XB (2011) J Power Sources 196:5645–5650

    Article  CAS  Google Scholar 

  5. Wang HY, Huang KL, Ren Y, Huang XB, Liu SQ, Wang WJ (2011) J Power Sources 196:9786–9791

    Article  CAS  Google Scholar 

  6. Chernova NA, Roppolo M, Dillon AC, Whittingham MS (2009) J Mater Chem 19:2526–2552

    Article  CAS  Google Scholar 

  7. Pinna N, Wild U, Urban J, Schlögl R (2003) Adv Mater 15:329–331

    Article  CAS  Google Scholar 

  8. Spahr ME, Bitterli P, Nesper R, Müller M, Krumeich F, Nissen HU (1998) Angew Chem Int Ed 37:1263–1265

    Article  CAS  Google Scholar 

  9. Mao CJ, Pan HC, Wu XC, Zhu JJ, Chen HY (2006) J Phys Chem B 110:14709–14713

    Article  CAS  Google Scholar 

  10. Cao AM, Hu JS, Liang HP, Wan LJ (2005) Angew Chem Int Ed 44:4391–4395

    Article  CAS  Google Scholar 

  11. Li BX, Xu Y, Rong GX, Jing M, Xie Y (2006) Nanotechnology 17:2560–2566

    Article  CAS  Google Scholar 

  12. Li GC, Pang SP, Jiang L, Guo ZY, Zhang ZK (2006) J Phys Chem B 110:9383–9386

    Article  CAS  Google Scholar 

  13. Chan CK, Peng H, Twesten RD, Jarausch K, Zhang XF, Cui Y (2007) Nano Lett 7:490–495

    Article  CAS  Google Scholar 

  14. Lee JK, Kim GP, Song IK, Baeck SH (2009) Electrochem Commun 11:1571–1574

    Article  CAS  Google Scholar 

  15. Zhai T, Liu H, Li H, Fang X, Liao M, Li L, Zhou H, Koide Y, Bando Y, Golberg D (2010) Adv Mater 22:2547–2552

    Article  CAS  Google Scholar 

  16. Whittingham MS (1976) J Electrochem Soc 123:315–320

    Article  CAS  Google Scholar 

  17. Delmas C, Cognac-Auradou H, Cocciantelli JM, Menetrier M, Doumerc JP (1994) Solid State Ionics 69:257–264

    Article  CAS  Google Scholar 

  18. Garcia B, Millet M, Pereira-Ramos JP, Baffier N, Bloch D (1999) J Power Sources 81/82:670–674

    Article  Google Scholar 

  19. Baddour-Hadjean R, Marzouk A, Pereira-Ramos JP (2011) J Raman Spectrosc. doi:10.1002/jrs.2984

  20. Murphy DW, Christian PA, Disalvo FJ, Waszczak JV (1979) Inorg Chem 18:2800–2803

    Article  CAS  Google Scholar 

  21. Dai JX, Li SFY, Gao ZQ, Siow KS (1999) Chem Mater 11:3086–3090

    Article  CAS  Google Scholar 

  22. Wang YW, Xu HY, Wang H, Zhang YC, Song ZQ, Yan H, Wan CR (2004) Solid State Ionics 167:419–424

    Article  CAS  Google Scholar 

  23. Barker J, Saidi MY, Swoyer JL (2003) J Electrochem Soc 150(9):A1267–A1272

    Article  CAS  Google Scholar 

  24. Liu HM, Wang YG, Wang KX, Wang YR, Zhou HS (2009) J Power Sources 192:668–673

    Article  CAS  Google Scholar 

  25. Wagner CD (1979) Handbook of X-ray Photoelectron Spectroscopy. Perkin- Elmer, Minnesota, p 23

    Google Scholar 

  26. Kawakita J, Majima M, Miura T, Kishi T (1997) J Power Sources 66:135–139

    Article  CAS  Google Scholar 

  27. Heli H, Yadegari H, Jabbari A (2011) J Phys Chem C 115:10889–10897

    Article  CAS  Google Scholar 

  28. Bard AJ, Faulkner LR (2001) Electrochemical Methods, 2nd edn. Wiley, New York, p 226

    Google Scholar 

  29. Tossici R, Marassi R, Berrettoni M, Stizza S, Pistoia G (1992) Solid State Ionics 57:227–234

    Article  CAS  Google Scholar 

  30. Liu EH, Li XH, Hou ZH, He ZQ, Deng LF (2004) Acta Phys Chim Sin 20(4):377–381

    Google Scholar 

  31. Mcgraw JM, Bahn CS, Parilla PA, Perkins JD, Readey DW, Ginley DS (1999) Electrochim Acta 45:187–196

    Article  CAS  Google Scholar 

  32. Cao F, Prakash J (2002) Electrochim Acta 47:1607–1613

    Article  CAS  Google Scholar 

  33. Prosini PP, Lisi M, Zane D, Pasquali M (2002) Solid State Ionics 148:45–51

    Article  CAS  Google Scholar 

  34. Xu HY, Wang H, Song ZQ, Wang YW, Yan H, Yoshimura M (2004) Electrochim Acta 49:349–353

    Article  CAS  Google Scholar 

  35. Wang HY, Huang KL, Liu SQ, Huang CH, Wang WJ, Ren Y (2011) J Power Sources 196:788–792

    Article  CAS  Google Scholar 

  36. Zhang X, Liu SQ, Huang KL, Zhuang SX, Guo J, Wu T, Cheng P (2011) J Solid State Electrochem. doi:10.1007/s10008-011-1462-0

  37. Wang HB, Zeng YQ, Huang KL, Liu SQ, Chen LQ (2007) Electrochim Acta 52:5102–5107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the financial support from the Major State Basic Research Development Program of China (973 Program) (No. 2010CB227204), National Natural Science Foundation of China (No. 50972165), and Research Foundation of Hunan Province for Ph.D. Student (No. CX2010B114), Graduate Degree Thesis Innovation Foundation of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suqin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Wang, H., Liu, S. et al. Synthesis of γ-LiV2O5 nanorods as a high-performance cathode for Li ion battery. J Solid State Electrochem 16, 2555–2561 (2012). https://doi.org/10.1007/s10008-012-1659-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1659-x

Keywords

Navigation