Skip to main content
Log in

Superfluid λ transition in charged AdS black holes

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We observe a superfluid λ transition in the P-V criticality of charged AdS black holes, within a holographic extended thermodynamics that considers the variation of Newton’s constant G. We calculate the critical exponents and find that they coincide with those of a superfluid transition in liquid 4He and the Bose-Einstein condensation of hard-sphere Bose gas. Moreover, the independence of entropy and thermodynamic volume in the holographic framework allows us to construct a well-defined Ruppeiner metric. The associated scalar curvature suggests that the black holes show similar microscopic interactions with the hard-sphere Bose gas, where the superfluid (condensed) phase is dominated by repulsive interactions, while the normal (gas) phase is dominated by attractive interactions. These findings might provide us with new insights into the quantum aspect of charged AdS black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).

    Article  ADS  Google Scholar 

  2. J. D. Bekenstein, Lett. Nuovo Cimento 4, 737 (1972).

    Article  ADS  Google Scholar 

  3. J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  4. M. M. Caldarelli, G. Cognola, and D. Klemm, Class. Quantum Grav. 17, 399 (2000).

    Article  ADS  Google Scholar 

  5. D. Kastor, S. Ray, and J. Traschen, Class. Quantum Grav. 26, 195011 (2009).

    Article  ADS  Google Scholar 

  6. B. P. Dolan, Class. Quantum Grav. 28, 125020 (2011).

    Article  ADS  Google Scholar 

  7. A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, Phys. Rev. D 60, 064018 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, Phys. Rev. D 60, 104026 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  9. D. Kubizňák, and R. B. Mann, J. High Energ. Phys. 2012, 33 (2012).

    Article  ADS  Google Scholar 

  10. S. Gunasekaran, D. Kubizňák, and R. B. Mann, J. High Energ. Phys. 2012, 110 (2012).

    Article  ADS  Google Scholar 

  11. N. Altamirano, D. Kubizňák, and R. B. Mann, Phys. Rev. D 88, 101502 (2013).

    Article  ADS  Google Scholar 

  12. N. Altamirano, D. Kubizňák, R. B. Mann, and Z. Sherkatghanad, Class. Quantum Grav. 31, 042001 (2014).

    Article  ADS  Google Scholar 

  13. S. W. Wei, and Y. X. Liu, Phys. Rev. D 90, 044057 (2014).

    Article  ADS  Google Scholar 

  14. R. A. Hennigar, R. B. Mann, and E. Tjoa, Phys. Rev. Lett. 118, 021301 (2017).

    Article  ADS  PubMed  Google Scholar 

  15. R. A. Hennigar, E. Tjoa, and R. B. Mann, J. High Energ. Phys. 2017, 070 (2017).

    Article  Google Scholar 

  16. D. Kastor, S. Ray, and J. Traschen, J. High Energ. Phys. 2014, 120 (2014).

    Article  ADS  Google Scholar 

  17. A. Karch, and B. Robinson, J. High Energ. Phys. 2015, 73 (2015).

    Google Scholar 

  18. C. V. Johnson, Class. Quantum Grav. 31, 205002 (2014).

    Article  ADS  Google Scholar 

  19. B. P. Dolan, J. High Energ. Phys. 2014, 179 (2014).

    Article  ADS  Google Scholar 

  20. J. L. Zhang, R. G. Cai, and H. Yu, J. High Energ. Phys. 2015, 143 (2015).

    Article  Google Scholar 

  21. J. L. Zhang, R. G. Cai, and H. Yu, Phys. Rev. D 91, 044028 (2015).

    Article  ADS  Google Scholar 

  22. B. Dolan, Entropy 18, 169 (2016).

    Article  ADS  Google Scholar 

  23. F. McCarthy, D. Kubizňák, and R. B. Mann, J. High Energ. Phys. 2017, 165 (2017).

    Article  ADS  Google Scholar 

  24. M. B. Ahmed, W. Cong, D. Kubizňák, R. B. Mann, and M. R. Visser, Phys. Rev. Lett. 130, 181401 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. A. M. Frassino, J. F. Pedraza, A. Svesko, and M. R. Visser, Phys. Rev. Lett. 130, 161501 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. J. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  27. S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B 428, 105 (1998).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  28. E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  29. M. R. Visser, Phys. Rev. D 105, 106014 (2022).

    Article  ADS  CAS  Google Scholar 

  30. W. Cong, D. Kubizňák, and R. B. Mann, Phys. Rev. Lett. 127, 091301 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. R. K. Pathria, in Statistical Mechanics (Butterworth-Heinemann, Oxford, 1996).

    Google Scholar 

  32. K. Huang, Statistical Mechanics (John Wiley & Sons, Hoboken, 1990).

    Google Scholar 

  33. F. M. Gasparini, M. O. Kimball, K. P. Mooney, and M. Diaz-Avila, Rev. Mod. Phys. 80, 1009 (2008).

    Article  ADS  CAS  Google Scholar 

  34. C. Dasgupta, and B. I. Halperin, Phys. Rev. Lett. 47, 1556 (1981).

    Article  ADS  CAS  Google Scholar 

  35. A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and A. Tajdini, Rev. Mod. Phys. 93, 035002 (2021).

    Article  ADS  CAS  Google Scholar 

  36. J. C. Le Guillou, and J. Zinn-Justin, Phys. Rev. B 21, 3976 (1980).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  37. P. Grüter, D. Ceperley, and F. Laloë, Phys. Rev. Lett. 79, 3549 (1997).

    Article  ADS  Google Scholar 

  38. G. Ruppeiner, Rev. Mod. Phys. 67, 605 (1995).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  39. H. Janyszek, and R. Mrugaa, J. Phys. A-Math. Gen. 23, 467 (1990).

    Article  ADS  Google Scholar 

  40. S. W. Wei, Y. X. Liu, and R. B. Mann, Phys. Rev. Lett. 123, 071103 (2019).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  41. A. Dehyadegari, A. Sheykhi, and S. W. Wei, Phys. Rev. D 102, 104013 (2020).

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning-Chen Bai, Lei Li or Jun Tao.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12275183, 12275184, 12105191, and 12175212). We are grateful to Robert B. Mann, Xiuming Zhang and Yan He for useful discussions and valuable comments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, NC., Li, L. & Tao, J. Superfluid λ transition in charged AdS black holes. Sci. China Phys. Mech. Astron. 66, 120411 (2023). https://doi.org/10.1007/s11433-023-2203-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2203-5

Navigation