Skip to main content
Log in

Spin current Kondo effect in frustrated Kondo systems

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Magnetic frustrations can enhance quantum fluctuations in spin systems and lead to exotic topological insulating states. When coupled to mobile electrons, they may give rise to unusual non-Fermi liquid or metallic spin liquid states whose nature has not been well explored. Here, we propose a spin current Kondo mechanism underlying a series of non-Fermi liquid phases on the border of Kondo and magnetic phases in a frustrated three-impurity Kondo model. This mechanism is confirmed by renormalization group analysis and describes movable Kondo singlets called “holons” induced by an effective coupling between the spin current of conduction electrons and the vector chirality of localized spins. Similar mechanisms may widely exist in all frustrated Kondo systems and be detected through spin current noise measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Si, and F. Steglich, Science 329, 1161 (2010), arXiv: 1102.4896.

    Article  ADS  Google Scholar 

  2. Y. Yang, D. Pines, and G. Lonzarich, Proc. Natl. Acad. Sci. USA 114, 6250 (2017), arXiv: 1702.08132.

    Article  ADS  Google Scholar 

  3. P. Coleman, and A. H. Nevidomskyy, J. Low Temp. Phys. 161, 182 (2010), arXiv: 1007.1723.

    Article  ADS  Google Scholar 

  4. H. Zhao, J. Zhang, M. Lyu, S. Bachus, Y. Tokiwa, P. Gegenwart, S. Zhang, J. Cheng, Y. Yang, G. Chen, Y. Isikawa, Q. Si, F. Steglich, and P. Sun, Nat. Phys. 15, 1261 (2019), arXiv: 1907.04255.

    Article  Google Scholar 

  5. G. M. Schmiedeshoff, E. D. Mun, A. W. Lounsbury, S. J. Tracy, E. C. Palm, S. T. Hannahs, J. H. Park, T. P. Murphy, S. L. Budko, and P. C. Canfield, Phys. Rev. B 83, 180408 (2011), arXiv: 1102.4867.

    Article  ADS  Google Scholar 

  6. S. Nakatsuji, Y. Machida, Y. Maeno, T. Tayama, T. Sakakibara, J. Duijn, L. Balicas, J. N. Millican, R. T. Macaluso, and J. Y. Chan, Phys. Rev. Lett. 96, 087204 (2006).

    Article  ADS  Google Scholar 

  7. M. S. Kim, and M. C. Aronson, Phys. Rev. Lett. 110, 017201 (2013), arXiv: 1202.0220.

    Article  ADS  Google Scholar 

  8. J. Wang, and Y. Yang, Phys. Rev. B 104, 165120 (2021).

    Article  ADS  Google Scholar 

  9. M. Ferrero, L. De Leo, P. Lecheminant, and M. Fabrizio, J. Phys.-Condens. Matter 19, 433201 (2007).

    Article  ADS  Google Scholar 

  10. E. J. König, P. Coleman, and Y. Komijani, arXiv: 2002.12338.

  11. V. Drouin-Touchette, E. J. König, Y. Komijani, and P. Coleman, Phys. Rev. B 103, 205147 (2021), arXiv: 2101.10332.

    Article  ADS  Google Scholar 

  12. Y. B. Kudasov, and V. M. Uzdin, Phys. Rev. Lett. 89, 276802 (2002).

    Article  Google Scholar 

  13. B. C. Paul, and K. Ingersent, arXiv: cond-mat/9607190.

  14. K. Ingersent, A. W. W. Ludwig, and I. Affleck, Phys. Rev. Lett. 95, 257204 (2005), arXiv: cond-mat/0505303.

    Article  ADS  Google Scholar 

  15. B. Lazarovits, P. Simon, G. Zaránd, and L. Szunyogh, Phys. Rev. Lett. 95, 077202 (2005), arXiv: cond-mat/0407399.

    Article  ADS  Google Scholar 

  16. X. G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39, 11413 (1989).

    Article  ADS  Google Scholar 

  17. D. Grohol, K. Matan, J. H. Cho, S. H. Lee, J. W. Lynn, D. G. Nocera, and Y. S. Lee, Nat. Mater. 4, 323 (2005), arXiv: cond-mat/0504110.

    Article  ADS  Google Scholar 

  18. I. P. McCulloch, R. Kube, M. Kurz, A. Kleine, U. Schollwöck, and A. K. Kolezhuk, Phys. Rev. B 77, 094404 (2008), arXiv: 0712.3050.

    Article  ADS  Google Scholar 

  19. Y. Machida, S. Nakatsuji, S. Onoda, T. Tayama, and T. Sakakibara, Nature 463, 210 (2010).

    Article  ADS  Google Scholar 

  20. H. Ishizuka, and N. Nagaosa, arXiv: 1906.06501.

  21. H. Ishizuka, and N. Nagaosa, Sci. Adv. 4, eaap9962 (2018).

    Article  ADS  Google Scholar 

  22. L. N. Bulaevskii, C. D. Batista, M. V. Mostovoy, and D. I. Khomskii, Phys. Rev. B 78, 024402 (2008), arXiv: 0709.0575.

    Article  ADS  Google Scholar 

  23. G. Tatara, and H. Kohno, Phys. Rev. B 67, 113316 (2003), arXiv: cond-mat/0208377.

    Article  ADS  Google Scholar 

  24. Y. D. Wang, J. H. Wei, and Y. J. Yan, J. Chem. Phys. 152, 164113 (2020).

    Article  ADS  Google Scholar 

  25. Y. Komijani, and P. Coleman, Phys. Rev. Lett. 120, 157206 (2018), arXiv: 1710.03345.

    Article  ADS  Google Scholar 

  26. Y. Komijani, and P. Coleman, Phys. Rev. Lett. 122, 217001 (2019), arXiv: 1810.08148.

    Article  ADS  Google Scholar 

  27. J. Wang, Y. Y. Chang, C. Y. Mou, S. Kirchner, and C. H. Chung, Phys. Rev. B 102, 115133 (2020), arXiv: 1901.10411.

    Article  ADS  Google Scholar 

  28. N. Read, and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991).

    Article  ADS  Google Scholar 

  29. F. Wang, and A. Vishwanath, Phys. Rev. B 74, 174423 (2006), arXiv: cond-mat/0608129.

    Article  ADS  Google Scholar 

  30. R. Flint, and P. Coleman, Phys. Rev. B 79, 014424 (2009), arXiv: 0810.5144.

    Article  ADS  Google Scholar 

  31. P. Coleman, I. Paul, and J. Rech, Phys. Rev. B 72, 094430 (2005), arXiv: cond-mat/0503001.

    Article  ADS  Google Scholar 

  32. P. Bruno, and V. K. Dugaev, Phys. Rev. B 72, 241302 (2005), arXiv: cond-mat/0508640.

    Article  ADS  Google Scholar 

  33. H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005), arXiv: cond-mat/0412319.

    Article  ADS  Google Scholar 

  34. P. W. Anderson, J. Phys. C-Solid State Phys. 3, 2436 (1970).

    Article  ADS  Google Scholar 

  35. A. Nejati, K. Ballmann, and J. Kroha, Phys. Rev. Lett. 118, 117204 (2017), arXiv: 1612.03338.

    Article  ADS  Google Scholar 

  36. A. K. Mitchell, E. Sela, and D. E. Logan, Phys. Rev. Lett. 108, 086405 (2012), arXiv: 1111.6503.

    Article  ADS  Google Scholar 

  37. C. Gonzalez-Buxton, and K. Ingersent, Phys. Rev. B 57, 14254 (1998), arXiv: cond-mat/9803256.

    Article  ADS  Google Scholar 

  38. L. Zhu, and Q. Si, Phys. Rev. B 66, 024426 (2002), arXiv: condmat/0204121.

    Article  ADS  Google Scholar 

  39. P. Noziéres, and A. Blandin, J. Phys. France 41, 193 (1980).

    Article  Google Scholar 

  40. F. W. Jayatilaka, M. R. Galpin, and D. E. Logan, Phys. Rev. B 84, 115111 (2011), arXiv: 1106.5450.

    Article  ADS  Google Scholar 

  41. J. Rech, P. Coleman, G. Zarand, and O. Parcollet, Phys. Rev. Lett. 96, 016601 (2006), arXiv: cond-mat/0507001.

    Article  ADS  Google Scholar 

  42. T. Moriya, Phys. Rev. 120, 91 (1960).

    Article  ADS  Google Scholar 

  43. Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa, and Y. Tokura, Science 291, 2573 (2001).

    Article  ADS  Google Scholar 

  44. A. Kamra, F. P. Witek, S. Meyer, H. Huebl, S. Geprägs, R. Gross, G. E. W. Bauer, and S. T. B. Goennenwein, Phys. Rev. B 90, 214419 (2014), arXiv: 1409.8513.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Feng Yang.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303103), the National Natural Science Foundation of China (Grant Nos. 12174429, 11774401, and 11974397), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33010100), and the Youth Innovation Promotion Association of Chinese Academy of Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yang, YF. Spin current Kondo effect in frustrated Kondo systems. Sci. China Phys. Mech. Astron. 65, 227212 (2022). https://doi.org/10.1007/s11433-021-1805-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1805-6

Keywords

Navigation