Skip to main content
Log in

Physics of multiple level hairpin vortex structures in turbulence

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Previous experimental and numerical studies have revealed that the hairpin vortex is a basic flow element of transitional boundary layer. The hairpin vortex is believed to have legs, necks and a ring head. Based on our DNS study, the legs and the ring head are generated separately by different mechanisms. The legs function like an engine to generate low speed zones by rotation, create shear layers with surrounding high speed neighbor fluids, and further cause vortex ring formation through shear layer instability. In addition, the ring head is Ω-shaped and separated from quasi-streamwise legs from the beginning. Contrary to the classical concept of “vortex breakdown”, we believe transition from laminar flow to turbulence is a “buildup” process of multiple level vortical structures. The vortex rings of first level hairpins are mostly responsible for positive spikes, which cause new vorticity rollup, second level vortex leg formation and finally smaller second level vortex ring generation. The third and lower level vortices are generated following the same mechanism. In this paper, the physical process from Λ-vortex to multi-level hairpin vortices is described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Liu, and Z. Liu, J. Comput. Phys. 119, 325 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. C. Liu, and Z. Liu, in Proceedings of First AFOSR International Conference on DNS/LES (Air Force Office of Scientific Research, Ruston, 1997), pp.13–28.

    Google Scholar 

  3. S. Bake, D. Meyer, and U. Rist, J. Fluid Mech. 459, 217 (2002).

    Article  ADS  MATH  Google Scholar 

  4. X. Wu, P. Moin, J. Fluid. Mech. 630, 5 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Z. W. Duan, Z. X. Xiao, and S. Fu, Sci. China-Phys. Mech. Astron. 57, 2330 (2014).

    Article  ADS  Google Scholar 

  6. T. Theodorsen, Proceedings of the Midwestern Conference Fluid Mechanics (Ohio State University, Columbus, 1952), pp.1–19.

    Google Scholar 

  7. M. R. Head, and P. Bandyopadhyay, J. Fluid Mech. 107, 297 (1981).

    Article  ADS  Google Scholar 

  8. F. R. Hama, and J. Nutant, in Proceedings of 1963 Heat Transfer & Fluid Mechanics Institute (Stanford University Press, Palo Alto, California, 1963), p. 77.

    Google Scholar 

  9. S. J. Kline, W. C. Reynolds, F. A. Schraub, and P. W. Runstadler, J. Fluid Mech. 30, 741 (1967).

    Article  ADS  Google Scholar 

  10. C. R. Smith, J. D. Walker, A. H. Haidari, and U. Sobrun, Phil. Trans. R. Soc. A 336, 131 (1991).

    Article  ADS  MATH  Google Scholar 

  11. S. K. Robinson, Annu. Rev. Fluid Mech. 23, 601 (1991).

    Article  ADS  Google Scholar 

  12. S. K. Robinson, in Fluid Dynamics, 21st Plasma Dynamics and Lasers Conference 21st (Seattle, AIAA, 1990), p. 17.

    Google Scholar 

  13. W. Schoppa, and F. Hussain, J. Fluid. Mech. 453, 57 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. W. Schoppa, and F. Hussain, IUTAM Symposium on Simulation and Identification of Organized Structures in Flows (Springer, Netherlands, 1999), p. 61.

    Book  Google Scholar 

  15. H. S. Dou, Int. J. Phys. Sci. 6, 1411 (2011).

    MathSciNet  Google Scholar 

  16. R. J. Adrian, Phys. Fluids 19, 041301 (2007).

    Article  ADS  Google Scholar 

  17. J. G. Zhou, R. J. Adrian, and S. Balachandar, Phys. Fluids 8, 288 (1996).

    Article  ADS  MATH  Google Scholar 

  18. J. G. Zhou, R. J. Adrian, S. Balachandar, and T. M. Kendall, J. Fluid Mech. 387, 353 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. J. M. Wallace, J. Turbul. 13, 1 (2012).

    Article  Google Scholar 

  20. L. Jiang, C. L. Chang, M. Choudhari, and C. Liu, The 16th AIAA Computational Fluid Dynamics Conference (AIAA, Orlando, Florida, 2000), p. 3555.

    Google Scholar 

  21. C. Liu, and L. Chen, Comput. Fluids 45, 129 (2011).

    Article  MATH  Google Scholar 

  22. C. Liu, Y. Yan, and P. Lu, Comput. Fluids 102, 353 (2014).

    Article  Google Scholar 

  23. Y. Yan, C. Chen, H. Fu, and C. Liu, J. Turbul. 15(1), 1 (2014).

    Article  ADS  Google Scholar 

  24. Y. Wang, H. Al-Dujaly, J. Tang, and C. Liu, 53rd AIAA Aerospace Sciences Meeting (AIAA, Orlando, Florida, 2015), p. 1524.

    Google Scholar 

  25. S. K. Lele, J. Comput. Phys. 103, 16 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. C. W. Shu, and S. Osher. J. Comput. Phys. 77, 439 (1988).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. C. B. Lee, and R. Q. Li, J. Turbul. 8, 1 (2007).

    Article  Google Scholar 

  28. S. K. Robinson, Structure of Turbulence and Drag Reduction (Springer, Berlin Heidelberg, 1990), p. 23.

    Book  Google Scholar 

  29. H. J. Lugt. Recent Developments in Theoretical and Experimental Fluid Mechanics (Springer, Berlin Heidelberg, 1979), p. 309.

    Book  Google Scholar 

  30. R. F. Blackwelder, and J. D. Swearingen, Near Wall Turbul. 1, 268 (1989).

    ADS  Google Scholar 

  31. J. Jeong, and F. Hussain. J. Fluid Mech. 285, 69 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. F. K. Lu, A. J. Pierce, and Y. Shih, “Experimental study of near wake of micro vortex generators in supersonic flow”, AIAA Paper No. 2010-4623, 2010.

    Book  Google Scholar 

  33. S. Qin, and X. Cai, Opt. Lett. 36(20), 4068 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChaoQun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Al-Dujaly, H., Yan, Y. et al. Physics of multiple level hairpin vortex structures in turbulence. Sci. China Phys. Mech. Astron. 59, 624703 (2016). https://doi.org/10.1007/s11433-015-5757-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5757-5

Keywords

Navigation