Skip to main content

Hairpin Vortex Formation Mechanisms Based on LXC-Liutex Core Line Method

  • Conference paper
  • First Online:
Liutex and Third Generation of Vortex Definition and Identification

Abstract

Based on the direct numerical simulation (DNS) data, the generation mechanisms of hairpin vortices are studied in the research. The momentum thickness Reynolds number range is 250 < Reθ < 438. It is found that the hairpin vortex can be evolved from a spanwise vortex. A new hairpin vortex can also be formed from a pair of streamwise vortices. Besides, a younger hairpin vortex may be generated from the primary hairpin vortex. Apart from these three ways, a new hairpin vortex can be evolved from a pair of separated arch-shaped vortices, referred to as the fourth way. It is the first time that direct evidences are found for this particular generation process of hairpin vortex. The convincing proofs are shown by the Liutex iso-surfaces and LXC-liutex core line methods. The inherent mechanism of this phenomenon is analyzed and explained by the Biot-Savart law. It is concluded that the new hairpin evolves from a pair of arch-shaped vortices when the pair of arch-shaped vortices move downstream side by side in a short distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Theodorsen, Mechanism of turbulence, in Proceedings of the Second Midwestern Conference of Fluid Mechanics, (Ohio State University, Columbus, OH, 1952), pp. 1–19

    Google Scholar 

  2. M. Head, P. Bandyopadhyay, New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297–338 (1981)

    Article  ADS  Google Scholar 

  3. C.R. Smith, J.D.A. Walker, A.H. Haidari, U. Sobrun, On the dynamics of near-wall turbulence. Phil. Trans. R. Soc. Lond. A 336, 131–175 (1991)

    Article  ADS  Google Scholar 

  4. C. Liu, Z. Liu, Multigrid mapping and box relaxation for simulation of the whole process of flow transition in 3-D boundary layers. J. Comput. Phys. 119, 325–341 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  5. P. Lu, C. Liu, DNS study on mechanism of small length scale generation in late boundary layer transition. Phys. D 241(1), 11–24 (2012)

    Article  Google Scholar 

  6. C. Liu, Y. Yan, P. Lu, Physics of turbulence generation and sustenance in a boundary layer. Comput. Fluids 102, 353–384 (2014)

    Article  Google Scholar 

  7. X. Wu, P. Moin, Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech. 630, 5–41 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  8. J. Zhou, R. Adrian, S. Balachandar, T. Kendall, Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353–396 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  9. Y. Wang, W. Huang, C. Xu, On hairpin vortex generation from near-wall streamwise vortices. Acta Mech. Sin. 31(2), 139–152 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  10. C. Liu, Y. Gao, S. Tian, X. Dong, Rortex-A new vortex vector definition and vorticity tensor and vector decompositions. Phys. Fluids 30(3), 035103 (2018)

    Article  ADS  Google Scholar 

  11. C. Liu, Y. Gao, X. Dong, et al., Third generation of vortex identification methods: Omega and Liutex/Rortex based systems. J. Hydrodynam. 31(2), 205–223 (2019)

    Article  ADS  Google Scholar 

  12. X. Dong, Y. Gao, C. Liu, New normalized Rortex/vortex identification method. Phys. Fluids 31, 011701 (2019)

    Article  ADS  Google Scholar 

  13. Y. Gao, C. Liu, Rortex and comparison with eigenvalue-based vortex identification criteria. Phys. Fluids 30(8), 085107 (2018)

    Article  ADS  Google Scholar 

  14. Y. Wang et al., Liutex theoretical system and six core elements of vortex identification. J. Hydrodynam. 32(2), 197–211 (2020)

    Article  ADS  Google Scholar 

  15. H. Xu, X. Cai, C. Liu, Liutex (vortex) core definition and automatic identification for turbulence vortex structures. J. Hydrodynam. 31(5), 857–863 (2019)

    Article  ADS  Google Scholar 

  16. P. Colella, Direct Eulerian MUSCL scheme for gas dynamics. SIAM J. Sci. Stat. Comput. 6(1), 104–117 (1985)

    Article  MathSciNet  Google Scholar 

  17. H. Li, T. Yu, D. Wang, H. Xu, Heat-transfer enhancing mechanisms induced by the coherent structures of wall-bounded turbulence in channel with rib. Int. J. Heat Mass Transf. 137, 446–460 (2019)

    Article  Google Scholar 

  18. H. Xu, Direct numerical simulation of turbulence in a square annular duct. J. Fluid Mech. 621, 23–57 (2009)

    Article  ADS  Google Scholar 

  19. P. Schlatter, R. Örlü, Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116–126 (2010)

    Article  ADS  Google Scholar 

  20. H. Li, D. Wang, H. Xu, Numerical simulation of turbulent thermal boundary layer and generation mechanisms of hairpin vortex. Aerosp. Sci. Technol. 98, 105680 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyi Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H., Wang, D., Xu, H. (2021). Hairpin Vortex Formation Mechanisms Based on LXC-Liutex Core Line Method. In: Liu, C., Wang, Y. (eds) Liutex and Third Generation of Vortex Definition and Identification. Springer, Cham. https://doi.org/10.1007/978-3-030-70217-5_12

Download citation

Publish with us

Policies and ethics