Skip to main content

Experimental Studies on the Evolution of Hairpin Vortex Package in the Boundary Layer of a Square Tube

  • Conference paper
  • First Online:
Liutex and Third Generation of Vortex Identification

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 288))

  • 322 Accesses

Abstract

The hairpin vortex structures in the boundary layer with \({Re}_{\theta }\) = 159–239 of a square tube were studied experimentally using the moving single- frame and long-exposure image (M-SFLE) method. And the Liutex vortex identification criteria are used to confirm vortices and characterize their strength in the experimental results. The flow measurement system always moves at the same or similar speed as vortices in the boundary layer to track vortex structures continuously. The experimental results show that the secondary hairpin vortex and the tertiary hairpin vortex can be induced by the primary hairpin vortex. And the extension of the vortex packet in the flow direction can lead to the occurrence of vortex merging in the near-wall turbulent boundary layer. The Q2 event plays a key role in the formation of secondary hairpin vortices and the merging behaviors. The merging process of two vortices can be divided into three stages and the strength of the vortex structures has unique characteristics in different stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.J. Kline, W.C. Reynolds, F.A. Schraub, P.W. Runstadler, The structure of turbulent boundary layers. J. Fluid Mech. 30(4), 741–773 (1967)

    Article  ADS  MATH  Google Scholar 

  2. H. Kim, S.J. Kline, W.C. Reynolds, The production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech. 50(1), 133–160 (1971)

    Article  ADS  Google Scholar 

  3. T. Theodorsen, Mechanisms of turbulence, in Proceedings of the 2nd Midwestern Conference on Fluid Mechanics (1952)

    Google Scholar 

  4. M.R. Head, P. Bandyopadhyay, New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297–338 (1981)

    Article  ADS  Google Scholar 

  5. J. Zhou, R.J. Adrian, S. Balachandar, Autogeneration of near-wall vortical structures in channel flow. Phys. Fluids 8(1), 288–290 (1996)

    Article  ADS  MATH  Google Scholar 

  6. J. Zhou, R.J. Adrian, S. Balachandar, T. Kendall, Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353–396 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. R.J. Adrian, C.D. Meinhart, C.D. Tomkins, Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 1–54 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. I. Marusic, On the role of large-scale structures in wall turbulence. Phys. Fluids 13(3), 735–743 (2001)

    Article  ADS  MATH  Google Scholar 

  9. B. Ganapathisubramani, E.K. Longmire, I. Marusic, S. Pothos, Dual-plane PIV technique to determine the complete velocity gradient tensor in a turbulent boundary layer. Exp. Fluids 39(2), 222–231 (2005)

    Article  Google Scholar 

  10. G.E. Elsinga, R.J. Adrian, B.W. Van Oudheusden, F. Scarano, Three-dimensional vortex organization in a high -Reynolds-number supersonic turbulent boundary layer. J. Fluid Mech. 644, 35–60 (2010)

    Article  ADS  MATH  Google Scholar 

  11. D.J. Dennis, T.B. Nickels, Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets. J. Fluid Mech. 673, 180–217 (2011)

    Article  ADS  MATH  Google Scholar 

  12. X.R. Tang, X.R. Dong, X.S. Cai, W. Zhou, Liutex identification on hairpin vortex structures in a channel based on msfle and moving-PIV. J. Hydrodyn. 33(6), 1119–1128 (2021)

    Article  ADS  Google Scholar 

  13. W. Fan, Z. Wu, C. Xiaoshu, Image processing algorithm for particle trajectory image and reconstruction study on flow field. J. Exp. Fluid Mech. 33(4), 100–107 (2019)

    Google Scholar 

  14. A.E. Perry, M.S. Chong, A description of eddying motions and flow patterns using critical-point concepts. Annu. Rev. Fluid Mech. 19(1), 125–155 (1987)

    Article  ADS  Google Scholar 

  15. J.C. Hunt, A.A. Wray, P. Moin, Eddies, streams, and convergence zones in turbulent flows, in Studying Turbulence Using Numerical Simulation Databases, 2. Proceedings of the 1988 Summer Program (1988)

    Google Scholar 

  16. J. Jeong, F. Hussain, On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. C. Liu, Y. Wang, Y. Yang, Z. Duan, New omega vortex identification method. Sci. China Phys. Mech. Astron. 59(8), 1–9 (2016)

    Article  Google Scholar 

  18. C. Liu, Y. Gao, S. Tian, X. Dong, Rortex—a new vortex vector definition and vorticity tensor and vector decompositions. Phys. Fluids 30(3), 035103 (2018)

    Article  ADS  Google Scholar 

  19. Y.S. Gao, J.M. Liu, Y.F. Yu, C. Liu, A Liutex based definition and identification of vortex core center lines. J. Hydrodyn. 31(3), 445–454 (2019)

    Article  ADS  Google Scholar 

  20. C.R. Smith, J.D.A. Walker, A.H. Haidari, U. Sobrun, On the dynamics of near-wall turbulence. Philos. Trans. R. Soc. Lond. Ser. A: Phys. Eng. Sci. 336(1641), 131–175 (1991)

    Google Scholar 

  21. H. Li, D. Wang, H. Xu, Hairpin vortex formation mechanisms based on LXC-Liutex core line method, in Liutex and Third Generation of Vortex Definition and Identification (Springer, Cham, 2021), pp. 201–214

    Google Scholar 

  22. R.J. Adrian, S. Balachandar, Z.C. Lin, Spanwise growth of vortex structure in wall turbulence. KSME Int. J. 15(12), 1741–1749 (2001)

    Article  Google Scholar 

  23. G.U.O. Yanang, D.O.N.G. Xiangrui, C.A.I. Xiaoshu, Z.H.O.U. Wu, Experimental studies on vortices merging based on MSFLE and Liutex. 空气动力学学报 38(3), 432–440 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuyan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Dong, X., Cai, X., Zhou, W., Tang, X. (2023). Experimental Studies on the Evolution of Hairpin Vortex Package in the Boundary Layer of a Square Tube. In: Wang, Y., Gao, Y., Liu, C. (eds) Liutex and Third Generation of Vortex Identification. Springer Proceedings in Physics, vol 288. Springer, Singapore. https://doi.org/10.1007/978-981-19-8955-1_9

Download citation

Publish with us

Policies and ethics