Skip to main content
Log in

Two-dimensional silicon-carbon hybrids with a honeycomb lattice: New family for two-dimensional photovoltaic materials

  • Article
  • Condensed Matter Physics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We predict a series of new two-dimensional (2D) inorganic materials made of silicon and carbon elements (2D Si x C1-x ) based on density functional theory. Our calculations on optimized structure, phonon dispersion, and finite temperature molecular dynamics confirm the stability of 2D Si x C1-x sheets in a two-dimensional, graphene-like, honeycomb lattice. The electronic band gaps vary from zero to 2.5 eV as the ratio x changes in 2D Si x C1-x changes, suggesting a versatile electronic structure in these sheets. Interestingly, among these structures Si0.25C0.75 and Si0.75C0.25 with graphene-like superlattices are semimetals with zero band gap as their π and π* bands cross linearly at the Fermi level. Atomic structural searches based on particle-swarm optimization show that the ordered 2D Si x C1-x structures are energetically favorable. Optical absorption calculations demonstrate that the 2D silicon-carbon hybrid materials have strong photoabsorption in visible light region, which hold promising potential in photovoltaic applications. Such unique electronic and optical properties in 2D Si x C1-x have profound implications in nanoelectronic and photovoltaic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov K S A, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438: 197–200

    Article  ADS  Google Scholar 

  2. Geim A K. Graphene: Status and prospects. Science, 2009, 324: 1529–1534

    Article  ADS  Google Scholar 

  3. Zhang Y, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438: 201–204

    Article  ADS  Google Scholar 

  4. Wang Z F, Liu Z, Liu F. Quantum anomalous Hall effect in 2D organic topological insulators. Phys Rev Lett, 2013, 110: 196801

    Article  ADS  Google Scholar 

  5. Cahangirov S, Topsakal M, Aktürk E, et al. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett, 2009, 102: 236804

    Article  ADS  Google Scholar 

  6. Liu C C, Feng W, Yao Y. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys Rev Lett, 2011, 107: 076802

    Article  ADS  Google Scholar 

  7. Feng B, Ding Z, Meng S, et al. Evidence of silicene in honeycomb structures of silicon on Ag (111). Nano Lett, 2012, 12: 3507–3511

    Article  ADS  Google Scholar 

  8. Vogt P, De Padova P, Quaresima C, et al. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett, 2012, 108: 155501

    Article  ADS  Google Scholar 

  9. Fleurence A, Friedlein R, Ozaki T, et al. Experimental evidence for epitaxial silicene on diboride thin films. Phys Rev Lett, 2012, 108: 245501

    Article  ADS  Google Scholar 

  10. Lalmi B, Oughaddou H, Enriquez H, et al. Epitaxial growth of a silicene sheet. Appl Phys Lett, 2010, 97: 223009

    Article  Google Scholar 

  11. Lin C L, Arafune R, Kawahara K, et al. Substrate-induced symmetry breaking in silicene. Phys Rev Lett, 2013, 110: 076801

    Article  ADS  Google Scholar 

  12. Chen L, Liu C C, Feng B, et al. Evidence for Dirac fermions in a honeycomb lattice based on silicon. Phys Rev Lett, 2012, 109: 056804

    Article  ADS  Google Scholar 

  13. Bekaroglu E, Topsakal M, Cahangirov S, et al. First-principles study of defects and adatoms in silicon carbide honeycomb structures. Phys Rev B, 2010, 81: 075433

    Article  ADS  Google Scholar 

  14. Drissi L B, Saidi E H, Bousmina M, et al. DFT investigations of the hydrogenation effect on silicene/graphene hybrids. J Phys Condens Matter, 2012, 24: 485502

    Article  Google Scholar 

  15. Dai J, Zhao Y, Wu X, et al. Exploration of structures of two-dimensional boron–silicon compounds with sp2 silicon. J Phys Chem Lett, 2013, 4: 561–567

    Article  Google Scholar 

  16. Luo X, Yang J, Liu H, et al. Predicting two-dimensional boron–carbon compounds by the global optimization method. J Am Chem Soc, 2011, 133: 16275–16280

    Google Scholar 

  17. Zhang Z, Liu X, Yakobson B I, et al. Two-dimensional tetragonal TiC monolayer sheet and nanoribbons. J Am Chem Soc, 2012, 134: 19326–19328

    Article  Google Scholar 

  18. Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotech, 2012, 7: 699–712

    Article  ADS  Google Scholar 

  19. Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: A new direct- gap semiconductor. Phys Rev Lett, 2010, 105: 136805

    Article  ADS  Google Scholar 

  20. Bernardi M, Palummo M, Grossman J C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett, 2013, 13: 3664–3670

    Article  ADS  Google Scholar 

  21. Zhong P, Que W X, Zhang J, et al. Enhancing the performance of poly(3-hexylthiophene)/ZnO nanorod arrays based hybrid solar cells through incorporation of a third component. Sci China-Phys Mech Astron, 2014, 57: 1289–1298

    Article  ADS  Google Scholar 

  22. Wu B, Li W B, Yu H M, et al. Photoinduced charge injection in the metal/organic interface studied by transient photovoltage measurements with bias. Sci China-Phys Mech Astron, 2013, 56: 2012–2015

    Article  ADS  Google Scholar 

  23. Qin D S, Li G F, Quan W, et al. The improved performance in the ternary bulk heterojunction solar cells. Sci China-Phys Mech Astron, 2013, 56: 530–534

    Article  ADS  Google Scholar 

  24. Wu W, Wang L, Li Y, et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronic. Nature, 2014, 514: 470–474

    Article  ADS  Google Scholar 

  25. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169

    Article  ADS  Google Scholar 

  26. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59: 1758

    Article  ADS  Google Scholar 

  27. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865

    Article  ADS  Google Scholar 

  28. Wang Y, Lü J, Zhu L, et al. Crystal structure prediction via particle- swarm optimization. Phys Rev B, 2010, 82: 094116

    Article  ADS  Google Scholar 

  29. Togo A, Oba F, Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B, 2008, 78: 134106

    Article  ADS  Google Scholar 

  30. Sanville E, Kenny S D, Smith R, et al. Improved grid-based algorithm for Bader charge allocation. J Comput Chem, 2007, 27: 899–908

    Article  Google Scholar 

  31. Tang W, Sanville E, Henkelman G. A grid-based Bader analysis algorithm without lattice bias. J Phys Condens Matter, 2009, 21: 084204

    Article  ADS  Google Scholar 

  32. Li Y, Li F, Zhou Z, et al. SiC2 silagraphene and its one-dimensional derivatives: Where planar tetracoordinate silicon happens. J Am Chem Soc, 2010, 133: 900–908

    Article  Google Scholar 

  33. Zhou L J, Zhang Y F, Wu L M. SiC2 siligraphene and nanotubes: Novel donor materials in excitonic solar cells. Nano Lett, 2013, 13: 5431–5436

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Ren, Hui Li or Sheng Meng.

Additional information

Recommended by JIN KuiJuan (Associate Editor)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Ren, J., Fu, H. et al. Two-dimensional silicon-carbon hybrids with a honeycomb lattice: New family for two-dimensional photovoltaic materials. Sci. China Phys. Mech. Astron. 58, 106801 (2015). https://doi.org/10.1007/s11433-015-5703-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5703-6

Keywords

Navigation