Skip to main content
Log in

Enhancing the performance of poly(3-hexylthiophene)/ZnO nanorod arrays based hybrid solar cells through incorporation of a third component

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Sparse ZnO nanorod arrays (NRAs) are fabricated on transparent conducting oxide coated glass substrates by using a modified liquid phase epitaxial growth method. By adjusting the polymer concentrations and the spin-coating parameters, full infiltration of poly(3-hexylthiophene) (P3HT) into the as-prepared ZnO NRAs is achieved at 130°C in vacuum. A third component is incorporated into the P3HT/ZnO NRAs ordered bulk heterojunctions (BHJs) either through ZnO surface modification with N719 dye or CdS shell layer or by inclusion of a fullerene derivative into the P3HT matrix. Experimental results indicate that performances of the hybrid solar cells are improved greatly with the incorporation of a third component. However, the working principles of these third components differ from one another, according to morphology, structure, optical property, charge transfer and interfacial properties of the composite structures. An ideal device architecture for hybrid solar cells based on P3HT/ZnO NRAs ordered BHJs is proposed, which can be used as a guidance to further increase the power conversion efficiency of such solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen W, Zhang H, Hsing I M, et al. A new photoanode architecture of dye sensitized solar cell based on ZnO nanotetrapods with no need for calcinations. Electrochem Commun, 2009, 11(5): 1057–1060

    Article  Google Scholar 

  2. Shi Y, Zhan C, Wang L, et al. Polydisperse spindle-shaped ZnO particles with their packing micropores in the photoanode for highly efficient quasi-solid dye-sensitized solar cells. Adv Funct Mater, 2010, 20(3): 437–444

    Article  Google Scholar 

  3. Zhang Z, Yuan Y, Liang L, et al. Preparation and photoelectrocatalytic activity of ZnO nanorods embedded in highly ordered TiO2 nanotube arrays electrode for azo dye degradation. J Hazard Mater, 2008, 158(2–3): 517–522

    Article  Google Scholar 

  4. Ko S H, Park I, Pan H, et al. ZnO nanowire network transistor fabrication on a polymer substrate by low-temperature, all-inorganic nanoparticle solution process. Appl Phys Lett, 2008, 92(15): 154102

    Article  ADS  Google Scholar 

  5. Guo H, Zhou J, Lin Z. ZnO nanorod light-emitting diodes fabricated by electrochemical approaches. Electrochem Commun, 2008, 10(1): 146–150

    Article  Google Scholar 

  6. Zhang Q, Dandeneau C S, Candelaria S, et al. Effects of lithium ions on dye-sensitized ZnO aggregate solar cells. Chem Mater, 2010, 22(8): 2427–2433

    Article  Google Scholar 

  7. Zheng Y, Tao X, Wang L, et al. Novel ZnO-based film with double light-scattering layers as photoelectrodes for enhanced efficiency in dye-sensitized solar cells. Chem Mater, 2010, 22(3): 928–934

    Article  Google Scholar 

  8. Beek W J E, Wienk M M, Janssen R A J. Hybrid polymer solar cells based on zinc oxide. J Mater Chem, 2005, 15(29): 2985–2988

    Article  Google Scholar 

  9. Beek W J E, Wienk M M, Kemerink M, et al. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. J Phys Chem B, 2005, 109(19): 9505–9516

    Article  Google Scholar 

  10. Beek W J E, Wienk M M, Janssen R A J. Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles. Adv Funct Mater, 2006, 16(8): 1112–1116

    Article  Google Scholar 

  11. Quist P A C, Beek W J E, Wienk M M, et al. Photogeneration and decay of charge carriers in hybrid bulk heterojunctions of ZnO nanoparticles and conjugated polymers. J Phys Chem B, 2006, 110(21): 10315–10321

    Article  Google Scholar 

  12. Lin Y, Wang L, Chiu W. Novel poly(3-methylthiophene)-TiO2 hybrid materials for photovoltaic cells. Thin Solid Films, 2006, 511–512: 199–202

    Article  Google Scholar 

  13. Cecchetto E, Slooff L H, de Cola L, et al. Femtosecond spectroscopic studies of photoinduced electron transfer in MDMO-PPV:ZnO hybrid bulk heterojunctions. J Lumin, 2007, 122–123: 546–548

    Article  Google Scholar 

  14. Plank N O V, Welland M E, Macmanus-Driscoll J L, et al. The backing layer dependence of open circuit voltage in ZnO/polymer composite solar cells. Thin Solid Films, 2008, 516(20): 7218–7222

    Article  ADS  Google Scholar 

  15. Oosterhout S D, Wienk M M, Van Bavel S S, et al. The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells. Nat Mater, 2009, 8(10): 818–824

    Article  ADS  Google Scholar 

  16. Beek W J E, Slooff L H, Wienk M M, et al. Hybrid solar cells using a zinc oxide precursor and a conjugated polymer. Adv Funct Mater, 2005, 15(10): 1703–1707

    Article  Google Scholar 

  17. Boucle J, Ravirajan P, Nelson J. Hybrid polymer-metal oxide thin films for photovoltaic applications. J Mater Chem, 2007, 17(30): 3141–3151

    Article  Google Scholar 

  18. Shaw P E, Ruseckas A, Samuel I D W. Exciton diffusion measurements in poly(3-hexylthiophene). Adv Mater, 2008, 20(18): 3516–3520

    Article  Google Scholar 

  19. Goh C, Scully S R, McGehee M D. Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells. J Appl Phys, 2007, 101(11): 114503

    Article  ADS  Google Scholar 

  20. Peiro A M, Ravirajan P, Govender K, et al. Hybrid polymer/metal oxide solar cells based on ZnO columnar structures. J Mater Chem, 2006, 16(21): 2088–2096

    Article  Google Scholar 

  21. Sung Y H, Liao W P, Chen D W, et al. Room-temperature tailoring of vertical ZnO nanoarchitecture morphology for efficient hybrid polymer solar cells. Adv Funct Mater, 2012, 22(18): 3808–3814

    Article  Google Scholar 

  22. Olson D C, Lee Y J, White M S, et al. Effect of polymer processing on the performance of poly(3-hexylthiophene)/ZnO nanorod photovoltaic devices. J Phys Chem C, 2007, 111(44): 16640–16645

    Article  Google Scholar 

  23. Greene L E, Law M, Yuhas B D, et al. ZnO-TiO2 core-shell nano rod/P3HT solar cells. J Phys Chem C, 2007, 111(50): 18451–18456

    Article  Google Scholar 

  24. Olson D C, Shaheen S E, Collins R T, et al. The effect of atmosphere and ZnO morphology on the performance of hybrid poly(3-hexylthiophene)/ZnO nanofiber photovoltaic devices. J Phys Chem C, 2007, 111(44): 16670–16678

    Article  Google Scholar 

  25. Olson D C, Lee Y J, White M S, et al. Effect of ZnO processing on the photovoltage of ZnO/poly(3-hexylthiophene) solar cells. J Phys Chem C, 2008, 112(26): 9544–9547

    Article  Google Scholar 

  26. Baeten L, Conings B, Boyen H G, et al. Towards efficient hybrid solar cells based on fully polymer infiltrated ZnO nanorod arrays. Adv Mater, 2011, 23(25): 2802–2805

    Article  Google Scholar 

  27. Saba M I, Melis C, Colombo L, et al. Polymer crystallinity and transport at the poly(3-hexylthiophene)/zinc oxide interface. J Phys Chem C, 2011, 115(19): 9651–9655

    Article  Google Scholar 

  28. Said A J, Poize G, Martini C, et al. Hybrid bulk heterojunction solar cells based on P3HT and porphyrin-modified ZnO nanorods. J Phys Chem C, 2010, 114(25): 11273–11278

    Article  Google Scholar 

  29. Vaynzof Y, Kabra D, Zhao L, et al. Improved photoinduced charge carriers separation in organic-inorganic hybrid photovoltaic devices. Appl Phys Lett, 2010, 97(3): 033309

    Article  ADS  Google Scholar 

  30. Shao S, Liu F, Fang G, et al. Enhanced performances of hybrid polymer solar cells with p-methoxybenzoic acid modified zinc oxide nanoparticles as an electron acceptor. Org Electron, 2011, 12(4): 641–647

    Article  Google Scholar 

  31. Lin Y Y, Lee Y Y, Chang L, et al. The influence of interface modifier on the performance of nanostructured ZnO/polymer solar cells. Appl Phys Lett, 2009, 94(6): 063308

    Article  ADS  MathSciNet  Google Scholar 

  32. Tai Q, Zhao X, Yan F. Hybrid solar cells based on poly(3-hexylthiophene) and electronspun TiO2 nanofibers with effective interface modification. J Mater Chem, 2010, 20(35): 7366–7371

    Article  Google Scholar 

  33. Yao K, Chen L, Chen Y, et al. Interfacial nanostructuring of ZnO nanoparticles by fullerene surface functionalization for “annealing-free” hybrid bulk heterojunction solar cells. J Phys Chem C, 2012, 116(5): 3486–3491

    Article  MathSciNet  Google Scholar 

  34. Takanezawa K, Hirota K, Wei Q S, et al. Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices. J Phys Chem C, 2007, 111(19): 7218–7223

    Article  Google Scholar 

  35. Huang J, Yin Z, Zheng Q. Application of ZnO in organic and hybrid solar cells. Energy Environ Sci, 2011, 4(10): 3861–3877

    Article  Google Scholar 

  36. Liao H, Lin C, Chen Y, et al. Improvement in photovoltaic performance for hybrid P3HT/elongated CdS nanocrystals solar cells with F-doped SnO2 arrays. J Mater Chem, 2010, 20(26): 5429–5435

    Article  Google Scholar 

  37. Yin Y T, Que W X, Kam C H. ZnO nanorods on ZnO seed layer derived by sol-gel process. J Sol-Gel Sci Technol, 2010, 53(3): 605–612

    Article  Google Scholar 

  38. Qiu X, Que W, Yin X, et al. ZnO/CdS/CdSe core/double shell nanorod arrays derived by a successive ionic layer a dsorption and reaction process for quantum dot-sensitized solar cells. Semicond Sci Tech, 2011, 26(9): 095028

    Article  ADS  Google Scholar 

  39. Coakley K M, Liu Y, McGehee M D, et al. Infiltrating semiconductor polymers into self-assembled mesoporous titania films for photovoltaic applications. Adv Funct Mater, 2003, 13(4): 301–306

    Article  Google Scholar 

  40. Abrusci A, Ding I, Al-Hashimi M, et al. Facile infiltration of semiconductor polymer into mesoporous electrodes for hybrid solar cells. Energy Environ Sci, 2011, 4(8): 3051–3058

    Article  Google Scholar 

  41. Lee B, Buchholz D B, Guo P, et al. Optimizing the performance of a plastic dye-sensitized solar cell. J Phys Chem C, 2011, 115(19): 9787–9796

    Article  Google Scholar 

  42. Hirose F, Shikaku M, Kimura Y, et al. IR study on N719 dye adsorption with high temperature dye solution for highly efficient dye-sensitized solar cells. J Electrochem Soc, 2010, 157(11): B1578–B1581

    Article  Google Scholar 

  43. Weickert J, Auras F, Bein T, et al. Characterization of interfacial modifiers for hybrid solar cells. J Phys Chem C, 2011, 115(30): 15081–15088

    Article  Google Scholar 

  44. Chang J A, Rhee J H, Im S H, et al. High-performance nanostructured inorganic-organic heterojunction solar cells. Nano Lett, 2010, 10(7): 2609–2612

    Article  ADS  Google Scholar 

  45. He Z, Zhong C, Huang X, et al. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv Mater, 2011, 23(40): 4636–4643

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenXiu Que.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, P., Que, W., Zhang, J. et al. Enhancing the performance of poly(3-hexylthiophene)/ZnO nanorod arrays based hybrid solar cells through incorporation of a third component. Sci. China Phys. Mech. Astron. 57, 1289–1298 (2014). https://doi.org/10.1007/s11433-013-5213-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5213-3

Keywords

Navigation