Skip to main content
Log in

Solar sailing trajectory optimization with planetary gravity assist

  • Article
  • Dynamics and Control
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Significant propellant mass saving can be obtained with the use of complex multiple intermediate flyby maneuvers for conventional propulsion systems, and trip time also decreases for a portion of the proper solar sail missions. This paper discusses the performance of gravity assist (GA) in the time-optimal control problem of solar sailing with respect to sail lightness number and the energy difference between the initial and final orbit in the rendezvous problem in a two-body model, in which the GA is modeled as a substantial change in the velocity of the sailcraft at the GA time. In addition, this paper presents a method to solve the time-optimal problem of solar sailing with GA in a full ephemeris model, which introduces the third body’s gravity in a dynamic equation. This study builds a set of inner constraints that can describe the GA process accurately. Finally, this study presents an example for evaluating the accuracy and rationality of the two-body model’s simplification of GA by comparison with the full ephemeris model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedman L. Star Sailing: Solar Sailing and Interstellar Travel. New York: The Wiley Science Publications, 1988

    Google Scholar 

  2. Vulpetti G. Solar Sails: A Novel Approach to Interplanetary Travel. New York: The Praxis Publishing, Ltd, 2008

    Google Scholar 

  3. Leipold M, Fichtner H, Heber B, et al. Heliopause explorer-a sailcraft mission to the outer boundaries of the solar system. Acta Astronaut, 2006, 59(8–11): 785–796

    Article  ADS  Google Scholar 

  4. Sweetser T, Peterson C, Nilsen E, et al. Venus sample return missions—a range of science, a range of costs. Acta Astronaut, 2003, 52(2): 165–172

    Article  ADS  Google Scholar 

  5. Mori O, Tsuda Y, Sawada H, et al. Deployment and steering dynamics of spinning solar sail “IKAROS”. In: Second International Symposium on Solar Sailing. New York: Brooklyn, 2010

    Google Scholar 

  6. Dachwald B. Optimization of interplanetary solar sailcraft trajectories using evolutionary neurocontrol. J Guidance Control Dyn, 2004, 27(1): 66–72

    Article  ADS  Google Scholar 

  7. Hughes G, Macdonald M, McInnes C. Sample return from Mercury and other terrestrial planets using solar sail propulsion. J Spacecraft Rocket, 2006, 43(4): 828–835

    Article  ADS  Google Scholar 

  8. Polites M, Kalmanson J, Mangus D. Solar sail attitude control using small reaction wheels and magnetic torquers. J Aerospace Eng, 2008, 222(1): 53–62

    Google Scholar 

  9. Gong S P, Li J F, BaoYin H X. Passive stability design for the solar sail on displaced orbits. J Spacecraft Rocket, 2007, 44(5): 1071–1080

    Article  ADS  MathSciNet  Google Scholar 

  10. Gong S P, Li J F, Baoyin H X. Analysis of displaced solar sail orbits with passive control. J Guidance Control Dyn, 2008, 31(3): 782–785

    Article  ADS  Google Scholar 

  11. Gong S P, Li J F, Zhu K J. Dynamical analysis of a spinning solar sail. Adv Space Res, 2011, 48(11): 1797–1809

    Article  ADS  Google Scholar 

  12. MacDonald M, McInnes C, Dachwald B. Heliocentric solar sail orbit transfers with locally optimal control laws. J Spacecraft Rocket, 2007, 44(1): 273–276

    Article  ADS  Google Scholar 

  13. Gong S P, Li J F. Fuel consumption for interplanetary missions of solar sailing. Sci China-Phys Mech Astron, 2014, 57(3): 521–531

    Article  ADS  MathSciNet  Google Scholar 

  14. Gong S P, Li J F, Gao Y F. Solar sail time-optimal interplanetary transfer trajectory design. Res Astron Astrophys, 2011, 11(8): 981–996

    Article  ADS  Google Scholar 

  15. McInnes C. Solar sailing: Orbital mechanics and mission applications. Adv Space Res, 2003, 31(8): 1971–1980

    Article  ADS  Google Scholar 

  16. McAdams J, Dunham D, Farquhar R, et al. Trajectory design and maneuver strategy for the messenger mission to Mercury. J Spacecraft Rockets, 2006, 43(5): 1054–1064

    Article  ADS  Google Scholar 

  17. Quarta A, Mengali G. Solar sail missions to Mercury with Venus gravity assist. Acta Astronaut, 2009, 65(3–4): 495–506

    Article  ADS  Google Scholar 

  18. Broucke R. The celestial mechanics of gravity assist. In: AIAA/AAS Astrodynamics Conference, Minneapoils, MN, 15–18 Aug, 1988

  19. Prado A. Powered swingby. J Guidance Control Dyn, 1996, 19(5): 1142–1147

    Article  ADS  MATH  Google Scholar 

  20. Felipe G, Prado A. Classification of out-of-plane swing-by trajectories. J Guidance Control Dyn, 1999, 22(5): 643–649

    Article  ADS  Google Scholar 

  21. Felipe G, Prado A. Trajectory selection for a spacecraft performing a two-dimensional swing-by. Adv Space Res, 2004, 34(11): 2256–2261

    Article  ADS  Google Scholar 

  22. Bayliss S. Precision targeting for multiple swingby interplanetary trajectories. J Spacecraft Rockets, 1971, 8(9): 927–931

    Article  ADS  Google Scholar 

  23. Cai X, Chen Y, Li J. Low-thrust trajectory optimization in a full ephemeris model. Acta Mech Sin, doi: 10.1007/s10409-014-0038-5

  24. Kechichian J. Optimal low Earth orbit geostationary Earth orbit intermediate acceleration orbit transfer. J Guidance Control Dyn, 1997, 20(4): 803–811

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Ranieri C, Ocampo C. Indirect optimization of three-dimensional finite-burning interplanetary transfers including spiral dynamics. J Guidance Control Dyn, 2009, 32(2): 444–454

    Article  ADS  Google Scholar 

  26. Jiang F, Baoyin H, Li J. Practical techniques for low-thrust trajectory optimization with homotopic approach. J Guidance Control Dyn, 2012, 35(1): 245–258

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShengPing Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Li, J. & Gong, S. Solar sailing trajectory optimization with planetary gravity assist. Sci. China Phys. Mech. Astron. 58, 1–11 (2015). https://doi.org/10.1007/s11433-014-5567-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5567-1

Keywords

Navigation