Skip to main content
Log in

Propellant-efficient station-keeping using a hybrid sail in the Earth–Moon system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The problem of propellant-efficient station-keeping using a hybrid sail in the Earth–Moon system is investigated in this paper. To achieve high-precision station-keeping and minimize propellant consumption, the problem is addressed from perspectives of reference orbits design and control strategy design. A high-fidelity model of a hybrid sail, which consists of a solar electric propulsion (SEP) system and a solar sail covered by reflectivity control devices (RCDs), is exploited for reference orbits design in the Earth–Moon system using numerical methods. These hybrid-sail perturbed halo and Lyapunov orbits are parameterized by the sail’s reflectivity and are inherent unstable. An orbit-attitude control strategy is proposed for station-keeping which is composed of three parts: a nonlinear disturbance observer (NDO)-based optimal periodic orbital controller, SEP acceleration optimization, and a NDO-based robust backstepping attitude controller. In particular, RCDs are used in both orbital control and attitude control. Numerical results show that the proposed control strategy can guarantee high-precision station-keeping and effective reduction in propellant consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Macdonald, M., Hughes, G.W., McInnes, C.R., Lyngvi, A., Falkner, P., Atzei, A.: GeoSail: an elegant solar sail demonstration mission. J. Spacecr. Rockets 44(4), 784–796 (2007). https://doi.org/10.2514/1.22867

    Article  Google Scholar 

  2. West, J.L.: The GeoStorm warning mission: enhanced opportunities based on new technology. In: 14th AAS/AIAA Spaceflight Mechanics Conference, Maui, Hawaii (2004)

  3. Gong, S., Li, J.: Solar sail heliocentric elliptic displaced orbits. J. Guid. Control Dyn. 37(6), 2021–2026 (2014). https://doi.org/10.2514/1.G000660

    Article  Google Scholar 

  4. Fu, B., Sperber, E., Eke, F.: Solar sail technology-A state of the art review. Prog. Aerosp. Sci. 86, 1–19 (2016). https://doi.org/10.1016/j.paerosci.2016.07.001

    Article  Google Scholar 

  5. Gong, S., Li, J., Simo, J.: Orbital motions of a solar sail around the \(L_2\) earth–moon libration point. J. Guid. Control Dyn. 37(4), 1349–1356 (2014). https://doi.org/10.2514/1.G000063

    Article  Google Scholar 

  6. Ozimek, M.T., Grebow, D.J., Howell, K.C.: Design of solar sail trajectories with applications to lunar south pole coverage. J. Guid. Control Dyn. 32(6), 1884–1897 (2009). https://doi.org/10.2514/1.41963

    Article  Google Scholar 

  7. Heiligers, J., Hiddink, S., Noomen, R., McInnes, C.R.: Solar sail Lyapunv and halo orbits in the earth–moon three-body problem. Acta Astronaut. 116, 25–35 (2015). https://doi.org/10.1016/j.actaastro.2015.05.034

    Article  Google Scholar 

  8. Heiligers, J., Macdonald, M., Parker, J.S.: Extension of earth–moon libration point orbits with solar sail propulsion. Astrophys. Space Sci. 361(7), 241 (2016). https://doi.org/10.1007/s10509-016-2783-3

    Article  MathSciNet  Google Scholar 

  9. Heiligers, J., Parker, J.S., Macdonald, M.: Novel solar-sail mission concepts for high-latitude Earth and lunar observation. J. Guid. Control Dyn. 41(1), 212–230 (2018). https://doi.org/10.2514/1.G002919

    Article  Google Scholar 

  10. Yuan, J., Gao, C., Zhang, J.: Periodic orbits of solar sail equipped with reflectance control device in earth–moon system. Astrophys. Space Sci. 363(2), 23 (2018). https://doi.org/10.1007/s10509-017-3223-8

    Article  MathSciNet  Google Scholar 

  11. Gong, S., Li, J.: Solar sail halo orbit control using reflectivity control devices. Trans. Jpn. Soc. Aeronaut. Space Sci. 57(5), 279–288 (2014). https://doi.org/10.2322/tjsass.57.279

    Article  Google Scholar 

  12. Heiligers, J., Ceriotti, M., McInnes, C.R., Biggs, J.D.: Displaced geostationary orbit design using hybrid sail propulsion. J. Guid. Control Dyn. 34(6), 1852–1866 (2011). https://doi.org/10.2514/1.53807

    Article  Google Scholar 

  13. Ceriotti, M., McInnes, C.R.: Generation of optimal trajectories for Earth hybrid pole sitters. J. Guid. Control Dyn. 34(3), 847–859 (2011). https://doi.org/10.2514/1.50935

    Article  Google Scholar 

  14. Baig, S., McInnes, C.R.: Artificial three-body equilibria for hybrid low-thrust propulsion. J. Guid. Control Dyn. 31(6), 1644–1655 (2008). https://doi.org/10.2514/1.36125

    Article  Google Scholar 

  15. Tamakoshi, D., Kojima, H.: Solar sail orbital control using reflectivity variations near the earth–moon \(L_2\) point. J. Guid. Control Dyn. 41(2), 417–430 (2018). https://doi.org/10.2514/1.G002679

    Article  Google Scholar 

  16. Shirobokov, M., Trofimov, S., Ovchinnikov, M.: Survey of station-keeping techniques for libration point orbits. J. Guid. Control Dyn. 40(5), 1085–1105 (2017). https://doi.org/10.2514/1.G001850

    Article  Google Scholar 

  17. Biggs, J.D., Henninger, H.C., Narula, A.: Enhancing station-keeping control with the use of extended state observers. Front. Appl. Math. Stat. 4, 1–9 (2018). https://doi.org/10.3389/fams.2018.00024

    Article  Google Scholar 

  18. Leipold, M., Götz, M.: Hybrid photonic/electric propulsion. In: Kayser-Threde, GmBH Rept. SOL4-TR-KTH-001,Munich, Germany (2002)

  19. Biggs, J.D., McInnes, C.R.: Solar sail formation flying for deep-space remote sensing. J. Spacecr. Rockets 46(3), 670–678 (2009)

    Article  Google Scholar 

  20. Biggs, J.D., McInnes, C.R., Waters, T.: Control of solar sail periodic orbits in the elliptic three-body problem. J. Guid. Control Dyn. 32(1), 318–320 (2009). https://doi.org/10.2514/1.38362

    Article  MATH  Google Scholar 

  21. Peng, H., Zhao, J., Wu, Z., Zhong, W.: Optimal periodic controller for formation flying on libration point orbits. Acta Astronaut. 69, 537–550 (2011). https://doi.org/10.1016/j.actaastro.2011.04.020

    Article  Google Scholar 

  22. Narula, A., Biggs, J.D.: Fault-tolerant station-keeping on libration point orbits. J. Guid. Control Dyn. 41(4), 879–887 (2018). https://doi.org/10.2514/1.G003115

    Article  Google Scholar 

  23. Bryson, A.E.: Time-varying linear-quadratic control. J. Optim. Theory Appl. 100, 515–525 (1999). https://doi.org/10.1023/A:1022682305

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, Z., Wu, Z.: Nonlinear attitude control scheme with disturbance observer for flexible spacecrafts. Nonlinear Dyn. 81, 257–264 (2015). https://doi.org/10.1007/s11071-015-1987-3

    Article  MathSciNet  MATH  Google Scholar 

  25. Lee, D.: Nonlinear disturbance observer-based robust control of attitude tracking of rigid spacecraft. Nonlinear Dyn. 88, 1317–1328 (2017). https://doi.org/10.1007/s11071-016-3312-1

    Article  MATH  Google Scholar 

  26. Lou, Z., Zhang, K., Wang, Y., Gao, Q.: Active disturbance rejection station-keeping control for solar-sail libration-point orbits. J. Guid. Control Dyn. 39(8), 1917–1921 (2016). https://doi.org/10.2514/1.G001722

    Article  Google Scholar 

  27. Funase, R., Shirasawa, Y., Mimasu, Y., Mori, O., Tsuda, Y., Saiki, T., Kawaguchi, J.: On-orbit verification of fuel-free attitude control system for spinning solar sail utilizing solar radiation pressure. Adv. Space Res. 48(11), 1740–1746 (2011). https://doi.org/10.1016/j.asr.2011.02.022

    Article  Google Scholar 

  28. Mu, J., Gong, S., Li, J.: Coupled control of reflectivity modulated solar sail for GeoSail formation flying. J. Guid. Control Dyn. 38(4), 740–751 (2014). https://doi.org/10.2514/1.G000117

    Article  Google Scholar 

  29. Liu, J., Chen, L., Cui, N.: Solar sail chaotic pitch dynamics and its control in Earth orbits. Nonlinear Dyn. 90, 1755–1770 (2017). https://doi.org/10.1007/s11071-017-3762-0

    Article  MathSciNet  Google Scholar 

  30. Richardson, D.L.: Halo orbit formulation for the ISEE-3 mission. J. Guid. Control Dyn. 3(6), 543–548 (1980). https://doi.org/10.2514/3.56033

    Article  Google Scholar 

  31. Kulkarni, J.E., Campbell, M.E., Dullerud, G.E.: Stabilization of spacecraft flight in halo orbits: an H\(_{\infty } \) approach. IEEE Trans. Control Syst. Technol. 14(3), 572–578 (2006). https://doi.org/10.1109/TCST.2006.872517

    Article  Google Scholar 

  32. Gao, C., Yuan, J., Zhao, Y.: ADRC for spacecraft attitude and position synchronization in libration point orbits. Acta Astronaut. 145, 238–249 (2018). https://doi.org/10.1016/j.actaastro.2018.01.039

    Article  Google Scholar 

  33. Liu, J., Rong, S., Shen, F., Cui, N.: Dynamics and control of a flexible solar sail. Math. Probl. Eng. 2014(3), 1–25 (2014)

    Google Scholar 

  34. Wong, B., Patil, R., Misra, A.: Attitude dynamics of rigid bodies in the vicinity of the Lagrangian points. J. Guid. Control Dyn. 31(1), 252–256 (2008). https://doi.org/10.2514/1.28844

    Article  Google Scholar 

  35. Chen, W., Ballance, D.J., Gawthrop, P.J., O’Reilly, J.: A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 47(4), 932–938 (2000). https://doi.org/10.1109/41.857974

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Major Program of National Natural Science Foundation of China under Grant Numbers 61690210 and 61690211, and National Natural Science Foundation of China under Grant Number 11572248.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Yuan.

Ethics declarations

Conflict of interest

We have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Yuan, J., Zhang, J. et al. Propellant-efficient station-keeping using a hybrid sail in the Earth–Moon system. Nonlinear Dyn 95, 1323–1346 (2019). https://doi.org/10.1007/s11071-018-4631-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4631-1

Keywords

Navigation