Skip to main content
Log in

Ultrafast laser-chemical modification hybrid fabrication of hydrostatic bearings with a superhydrophobicity solid-liquid interface

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Oil film vortex severely reduces the stability of hydrostatic bearings. A solid-liquid interface with drag and slip properties can weaken the oil film vortex of the bearing. Here, a combined picosecond laser ablation and chemical modification method is proposed to prepare surfaces with microbulge array structure on 6061 aluminum alloy substrates. Because of the low surface energy of the perfluorododecyltriethoxysilane modification and the bulge geometry of the microbulge array structure, the surface shows excellent superhydrophobicity. The optimum contact angle in air for water is 164°, and that for oil is 139°. Two surfaces with “lotus-leaf effect” and “rose-petal effect” were obtained by controlling the processing parameters. The drag reduction properties of superhydrophobic surfaces were systematically investigated with slip lengths of 22.26 and 36.25 µm for deionized water and VG5 lubricant, respectively. In addition, the superhydrophobic surface exhibits excellent mechanical durability and thermal stability. The proposed method provides a new idea for vortex suppression in hydrostatic bearings and improves the stability of bearings in high-speed operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang Y, Cao H Y, Tian Z X. Stability analysis of long hydrodynamic journal bearings based on the journal center trajectory. Friction, 2021, 9: 1776–1783

    Article  Google Scholar 

  2. Du J, Liang G. Dynamic coefficients and stability analysis of a water-lubricated hydrostatic bearing by solving the uncoupled Reynolds equation. Chin J Aeronautics, 2020, 33: 2110–2122

    Article  Google Scholar 

  3. Ramos D J, Daniel G B. A new concept of active hydrodynamic bearing for application in rotating systems. Tribol Int, 2021, 153: 106592

    Article  Google Scholar 

  4. Aurelian F, Patrick M, Mohamed H. Wall slip effects in (elasto) hydrodynamic journal bearings. Tribol Int, 2011, 44: 868–877

    Article  Google Scholar 

  5. Rao T. Theoretical prediction of journal bearing stability characteristics based on the extent of the slip region on the bearing surface. Tribol Trans, 2009, 52: 750–758

    Article  CAS  Google Scholar 

  6. Bhattacharya A, Dutt J K, Pandey R K. Influence of hydrodynamic journal bearings with multiple slip zones on rotordynamic behavior. J Tribol, 2017, 139: 061701

    Article  Google Scholar 

  7. Li W L, Huang Z H, Lin C S, et al. On the linear stability analysis of journal bearings—Consideration of coupled effects of anisotropic slip and surface roughness. Tribol Int, 2019, 137: 254–266

    Article  Google Scholar 

  8. Phani Kumar M, Samanta P, Murmu N C. Rigid rotor stability analysis on finite hydrostatic double-layer porous oil journal bearing with velocity slip. Tribol Trans, 2015, 58: 930–940

    Article  CAS  Google Scholar 

  9. Rao T, Rani A M A, Awang M, et al. Stability evaluation of three-layered journal bearing with slip/partial slip. Ind Lub Tribol, 2017, 69: 334–341

    Article  Google Scholar 

  10. Sharma S C, Jamwal G, Awasthi R K. Dynamic and stability performance improvement of the hydrodynamic bearing by using triangular-shaped textures. P I Mech Eng J-J Eng, 2020, 234: 1436–1451

    Google Scholar 

  11. Zhao X, Xue Y, Yang H, et al. Drag reduction effect of ultraviolet laser-fabricated superhydrophobic surface. Surf Eng, 2020, 36: 1307–1314

    Article  CAS  Google Scholar 

  12. Rong W, Zhang H, Mao Z, et al. Stable drag reduction of anisotropic superhydrophobic/hydrophilic surfaces containing bioinspired micro/nanostructured arrays by laser ablation. Colloid Surfs A-Physicochem Eng Aspects, 2021, 622: 126712

    Article  CAS  Google Scholar 

  13. Ko Y S, Kim H J, Ha C W, et al. Quantifying frictional drag reduction properties ofsuperhydrophobic metal oxide nanostructures. Langmuir, 2020, 36: 11809–11816

    Article  CAS  PubMed  Google Scholar 

  14. Chen Q, Duan J, Hou Z, et al. Effect of the surface pattern on the drag property of the superhydrophobic surface. Phys Fluids, 2022, 34: 114113

    Article  CAS  ADS  Google Scholar 

  15. Lin Y, Han J, Cai M, et al. Durable and robust transparent super-hydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability. J Mater Chem A, 2018, 6: 9049–9056

    Article  CAS  ADS  Google Scholar 

  16. Saadatbakhsh M, Jamali Asl S, Kiani M J, et al. Slip length measurement of pdms/hydrophobic silica superhydrophobic coating for drag reduction application. Surf Coat Tech, 2020, 404: 126428

    Article  CAS  Google Scholar 

  17. Lian Z, Cheng Y, Liu Z, et al. Scalable fabrication of super-hydrophobic armor microstructure arrays with enhanced tribocorrosion performance via maskless electrochemical machining. Surf Coat Tech, 2023, 461: 129427

    Article  CAS  Google Scholar 

  18. Wu C Y, Rong Y M, Huang Y, et al. Laser cutting of thermoplastic film: Mechanism and processing technology. Sci China Tech Sci, 2022, 65: 2068–2078

    Article  ADS  Google Scholar 

  19. Zhang X N, Gan L, Sun B, et al. Bio-inspired manufacturing of superwetting surfaces for fog collection and anti-icing applications. Sci China Tech Sci, 2022, 65: 1975–1994

    Article  Google Scholar 

  20. Guo M H, Zhang G J, Xin G Q, et al. Laser direct writing of rose petal biomimetic micro-bulge structure to realize superhydrophobicity and large slip length. Colloid Surfs A-Physicochem Eng Aspects, 2023, 664: 130972

    Article  CAS  Google Scholar 

  21. Wang X L, Wang H Y, Liu Y D, et al. Improvement of multi-functional properties by fabricating micro-pillar arrays structures on zirconium alloy surface. Sci China Tech Sci, 2022, 65: 1243–1252

    Article  CAS  Google Scholar 

  22. Ju G, Zhou L, Li J, et al. Robust metallic-based superhydrophobic composite with rigid micro-skeleton structure for anti-icing/frosting. J Mater Process Tech, 2023, 316: 117916

    Article  CAS  Google Scholar 

  23. Wang D, Sun Q, Hokkanen M J, et al. Design of robust super-hydrophobic surfaces. Nature, 2020, 582: 55–59

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Latthe S, Terashima C, Nakata K, et al. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf. Molecules, 2014, 19: 4256–4283

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yang J, Long F, Wang R, et al. Design of mechanical robust super-hydrophobic Cu coatings with excellent corrosion resistance and self-cleaning performance inspired by lotus leaf. Colloid Surfs A-Physicochem Eng Aspects, 2021, 627: 127154

    Article  CAS  Google Scholar 

  26. Li L, Huang T, Lei J, et al. Robust biomimetic-structural super-hydrophobic surface on aluminum alloy. ACS Appl Mater Interfaces, 2015, 7: 1449–1457

    Article  CAS  PubMed  Google Scholar 

  27. Sahoo B N, Kandasubramanian B. Recent progress in fabrication and characterisation of hierarchical biomimetic superhydrophobic structures. RSC Adv, 2014, 4: 22053–22093

    Article  CAS  ADS  Google Scholar 

  28. Koch K, Barthlott W. Superhydrophobic and superhydrophilic plant surfaces: An inspiration for biomimetic materials. Phil Trans R Soc A, 2009, 367: 1487–1509

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Chen T, Liu H, Yang H, et al. Biomimetic fabrication of robust self-assembly superhydrophobic surfaces with corrosion resistance properties on stainless steel substrate. RSC Adv, 2016, 6: 43937–43949

    Article  CAS  ADS  Google Scholar 

  30. Yang Y, Li X, Zheng X, et al. 3D-Printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation. Adv Mater, 2018, 30: 1704912

    Article  Google Scholar 

  31. Liu Y, Li X, Jin J, et al. Anti-icing property of bio-inspired microstructure superhydrophobic surfaces and heat transfer model. Appl Surf Sci, 2017, 400: 498–505

    Article  CAS  ADS  Google Scholar 

  32. Lin J, Cai Y, Wang X, et al. Fabrication of biomimetic super-hydrophobic surfaces inspired by lotus leaf and silver ragwort leaf. Nanoscale, 2011, 3: 1258–1262

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Zhang X, Liu Z, Li Y, et al. Durable superhydrophobic surface prepared by designing “micro-eggshell” and “web-like” structures. Chem Eng J, 2020, 392: 123741

    Article  CAS  Google Scholar 

  34. Gao R, Liu Q, Wang J, et al. Fabrication of fibrous szaibelyite with hierarchical structure superhydrophobic coating on AZ31 magnesium alloy for corrosion protection. Chem Eng J, 2014, 241: 352–359

    Article  CAS  Google Scholar 

  35. Wang Y D, Xu Z Y, Zhang A, et al. Surface morphology and electrochemical behaviour of Ti-48Al-2Cr-2Nb alloy in low-concentration salt solution. Sci China Tech Sci, 2021, 64: 283–296

    Article  CAS  Google Scholar 

  36. Shang H M, Wang Y, Limmer S J, et al. Optically transparent superhydrophobic silica-based films. Thin Solid Films, 2005, 472: 37–43

    Article  CAS  ADS  Google Scholar 

  37. Badre C, Pauporté T, Turmine M, et al. Water-repellent ZnO nanowires films obtained by octadecylsilane self-assembled monolayers. Physica E-Low-dimensional Syst NanoStruct, 2008, 40: 2454–2456

    Article  CAS  ADS  Google Scholar 

  38. Öner D, McCarthy T J. Ultrahydrophobic surfaces effects of topography length scales on wettability. Langmuir, 2000, 16: 7777–7782

    Article  Google Scholar 

  39. Wang Q, Liu Y, Jiang L, et al. Metal micro/nanostructure enhanced laser-induced breakdown spectroscopy. Anal Chim Acta, 2023, 1241: 340802

    Article  CAS  PubMed  Google Scholar 

  40. Zheng B, Jiang G, Wang W, et al. Fabrication of superhydrophilic or superhydrophobic self-cleaning metal surfaces using picosecond laser pulses and chemical fluorination. Radiat Effects Defects Solids, 2016, 171: 461–473

    Article  CAS  ADS  Google Scholar 

  41. Pan Q, Cao Y, Xue W, et al. Picosecond laser-textured stainless steel superhydrophobic surface with an antibacterial adhesion property. Langmuir, 2019, 35: 11414–11421

    Article  CAS  PubMed  Google Scholar 

  42. Mao Z, Cao W, Hu J, et al. A dual-functional surface with hierarchical micro/nanostructure arrays for self-cleaning and antireflection. RSC Adv, 2017, 7: 49649–49654

    Article  CAS  ADS  Google Scholar 

  43. Wu W, Wang J, Liu Q, et al. Electrochemical polishing assisted selective laser melting of biomimetic superhydrophobic metallic parts. Appl Surf Sci, 2022, 596: 153601

    Article  CAS  Google Scholar 

  44. Ahmmed K, Kietzig A M. Drag reduction on laser-patterned hierarchical superhydrophobic surfaces. Soft Matter, 2016, 12: 4912–4922

    Article  ADS  Google Scholar 

  45. Lee C, Kim C J. Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls. Langmuir, 2009, 25: 12812–12818

    Article  CAS  PubMed  Google Scholar 

  46. Ahmmed KMT, Patience C, Kietzig A M. Internal and external flow over laser-textured superhydrophobic polytetrafluoroethylene (PTFE). ACS Appl Mater Interfaces, 2016, 8: 27411–27419

    Article  CAS  PubMed  Google Scholar 

  47. Lee C, Choi C H, Kim C J. Structured surfaces for a giant liquid slip. Phys Rev Lett, 2008, 101: 064501

    Article  PubMed  ADS  Google Scholar 

  48. Wang S Y, Ren Y, Cheng C W, et al. Micromachining of copper by femtosecond laser pulses. Appl Surf Sci, 2013, 265: 302–308

    Article  CAS  ADS  Google Scholar 

  49. Long J, Pan L, Fan P, et al. Cassie-state stability of metallic super-hydrophobic surfaces with various micro/nanostructures produced by a femtosecond laser. Langmuir, 2016, 32: 1065–1072

    Article  CAS  PubMed  Google Scholar 

  50. Oopath S V, Baji A, Abtahi M. Biomimetic rose petal structures obtained using UV-nanoimprint lithography. Polymers, 2022, 14: 3303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lai Y, Huang J, Gong J, et al. Superhydrophilic-superhydrophobic template: A simple approach to micro- and nanostructure patterning of TiO2 films. J Electrochem Soc, 2009, 156: D480

    Article  CAS  Google Scholar 

  52. Hao L, Yu S, Han X, et al. Design of submicron structures with superhydrophobic and oleophobic properties on zinc substrate. Mater Des, 2015, 85: 653–660

    Article  CAS  Google Scholar 

  53. Amoruso S, Ausanio G, Bruzzese R, et al. Characterization of laser ablation of solid targets with near-infrared laser pulses of 100 fs and 1 ps duration. Appl Surf Sci, 2006, 252: 4863–4870

    Article  CAS  ADS  Google Scholar 

  54. Gao X, Jiang L. Water-repellent legs of water striders. Nature, 2004, 432: 36

    Article  CAS  PubMed  ADS  Google Scholar 

  55. Wang Q, Xu S, Xing X, et al. Progress in fabrication and applications of micro/nanostructured superhydrophobic surfaces. Surf Innovations, 2022, 10: 89–110

    Article  CAS  Google Scholar 

  56. Aboud D G K, Kietzig A M. Influence of microstructure topography on the oblique impact dynamics of drops on superhydrophobic surfaces. Langmuir, 2021, 37: 4678–4689

    Article  CAS  PubMed  Google Scholar 

  57. Jia J, Fan J F, Xu B S, et al. Microstructure and properties of the super-hydrophobic films fabricated on magnesium alloys. J Alloys Compd, 2013, 554: 142–146

    Article  CAS  Google Scholar 

  58. Li H, Yu S R, Han X X. Preparation of a biomimetic super-hydrophobic ZnO coating on an X90 pipeline steel surface. New J Chem, 2015, 39: 4860–4868

    Article  Google Scholar 

  59. Wenzel R N. Resistance of solid surfaces to wetting by water. Ind Eng Chem, 1936, 28: 988–994

    Article  CAS  Google Scholar 

  60. Bormashenko E. Progress in understanding wetting transitions on rough surfaces. Adv Colloid Interface Sci, 2015, 222: 92–103

    Article  CAS  PubMed  Google Scholar 

  61. Cassie A B D, Baxter S. Wettability ofporous surfaces. Trans Faraday Soc, 1944, 40: 546–551

    Article  CAS  Google Scholar 

  62. Wenzel R N. Surface roughness and contact angle. J Phys Chem, 1949, 53: 1466–1467

    Article  CAS  Google Scholar 

  63. Wang K, Zhang Y, Yu Y, et al. Simulation of boundary slip on a liquid-solid surface based on the lattice Boltzmann method. ScienceAsia, 2015, 41: 130–135

    Article  Google Scholar 

  64. Maali A, Bhushan B. Measurement of slip length on super-hydrophobic surfaces. Phil Trans R Soc A, 2015, 370: 2304–2320

    Article  ADS  Google Scholar 

  65. Srinivasan S, Choi W, Park K C, et al. Drag reduction for viscous laminar flow on spray-coated non-wetting surfaces. Soft Matter, 2013, 9: 5691–5702

    Article  CAS  ADS  Google Scholar 

  66. Fukagata K, Kasagi N, Koumoutsakos P. A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces. Phys Fluids, 2006, 18: 051703

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoJun Zhang.

Additional information

This work was supported by the National Key R&D Program of China (Grant No. 2020YFB2007600), National Natural Science Foundation of China (Grant Nos. 51875223 and 52188102), and Guangdong HUST Industrial Technology Research Institute, Guangdong Provincial Key Laboratory of Manufacturing Equipment Digization (Grant No. 2020B1212060014).

Supporting Information

The supporting information is available online at tech.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information

Appendix

Supplementary material, approximately 2.63 MB.

Supplementary material, approximately 3.05 MB.

Supplementary material, approximately 857 MB.

Supplementary material, approximately 686 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, M., Rong, Y., Huang, Y. et al. Ultrafast laser-chemical modification hybrid fabrication of hydrostatic bearings with a superhydrophobicity solid-liquid interface. Sci. China Technol. Sci. 67, 696–708 (2024). https://doi.org/10.1007/s11431-023-2573-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-023-2573-1

Navigation