Skip to main content
Log in

Laser cutting of thermoplastic film: Mechanism and processing technology

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The mechanism of ultraviolet (UV) nanosecond laser cutting of thermoplastic films and the influence of process parameters on process quality are systematically discussed. The photothermal effect plays a dominant role in the interaction between the UV-nanosecond laser and thermoplastic materials. In this photothermal reaction, a heat source with the focal point as the core is formed, around which a thermal carbonization layer, a thermal melting layer, and a thermal expansion layer are formed in order from the inside to the outside. Among them, the thermal carbonization layer is not prevalent, and the thermal melting layer and thermal expansion layer are prevalent. The process quality can be adjusted by adjusting the cutting speed, the laser power, and the repetition number of cuts to regulate the process of heat generation and heat dissipation. In the effective range, the faster the cutting speed and the lower the laser power, the smaller the kerf width and heat-affected zone (HAZ) width. Within a certain range, the depth of kerf can be increased by increasing the repetition number of cuts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pena J R, Hidalgo M, Mijangos C. Plastification of poly(vinyl chloride) by polymer blending. J Appl Polym Sci, 2000, 75: 1303–1312

    Article  Google Scholar 

  2. Ru L, Jie-rong C. Studies on wettability of medical poly(vinyl chloride) by remote argon plasma. Appl Surf Sci, 2006, 252: 5076–5082

    Article  Google Scholar 

  3. Chen J R, Yan J L, Zhang Y Z. Surface modification of medical PVC by remote oxygen plasma. Composite Interfaces, 2004, 11: 123–130

    Article  Google Scholar 

  4. Tao Y. Application and analysis of polycarbonate in automotive lamps. China Plast Indust, 2014, 42: 120–123

    Google Scholar 

  5. Katsamberis D, Browall K, Iacovangelo C, et al. Highly durable coatings for automotive polycarbonate glazing. Prog Org Coatings, 1998, 34: 130–134

    Article  Google Scholar 

  6. Panseri S, Chiesa L M, Zecconi A, et al. Determination of volatile organic compounds (VOCs) from wrapping films and wrapped PDO italian cheeses by using HS-SPME and GC/MS. Molecules, 2014, 19: 8707–8724

    Article  Google Scholar 

  7. Azlin-Hasim S, Cruz-Romero M C, Morris M A, et al. The potential application of antimicrobial silver polyvinyl chloride nanocomposite films to extend the shelf-life of chicken breast fillets. Food Bioprocess Technol, 2016, 9: 1661–1673

    Article  Google Scholar 

  8. Cannarsi M, Baiano A, Marino R, et al. Use of biodegradable films for fresh cut beef steaks packaging. Meat Sci, 2005, 70: 259–265

    Article  Google Scholar 

  9. Riveiro A, Soto R, del Val J, et al. Texturing of polypropylene (PP) with nanosecond lasers. Appl Surf Sci, 2016, 374: 379–386

    Article  Google Scholar 

  10. Song G, Tan D Q. Atomic layer deposition for polypropylene film engineering—A review. Macromol Mater Eng, 2020, 305: 2000127

    Article  Google Scholar 

  11. Gorelov Y P, Mekalina IV, Trigub T S, et al. Chemical modification of transparent acrylate polymers for enhancing the resource of aircraft glazing parts. Russian J General Chem, 2011, 81: 1036–1041

    Article  Google Scholar 

  12. Mishra V, Sharma R, Khatri N, et al. Processing of polycarbonate by ultra-precision machining for optical applications. Mater Today-Proc, 2018, 5: 25130–25138

    Article  Google Scholar 

  13. Wang J, Lou Y, Wang B, et al. Highly sensitive, breathable, and flexible pressure sensor based on electrospun membrane with assistance of AGNW/TPU as composite dielectric layer. Sensors, 2020, 20: 2459

    Article  Google Scholar 

  14. Zhu L, Zhou X, Liu Y, et al. Highly sensitive, ultrastretchable strain sensors prepared by pumping hybrid fillers of carbon nanotubes/cellulose nanocrystal into electrospun polyurethane membranes. ACS Appl Mater Interfaces, 2019, 11: 12968–12977

    Article  Google Scholar 

  15. Zhuang Y, Guo Y, Li J, et al. Study on the forming and sensing properties of laser-sintered TPU/CNT composites for plantar pressure sensors. Int J Adv Manuf Technol, 2021, 112: 2211–2222

    Article  Google Scholar 

  16. Faraji M, Mohammadzadeh Aydisheh H. Rational synthesis of a highly porous PANI-CNTs-PVC film for high performance flexible supercapacitor. ChemElectroChem, 2018, 5: 2882–2892

    Article  Google Scholar 

  17. Wang H, Liu D, Duan X, et al. Facile preparation of high-strength polyaniline/polyvinyl chloride composite film as flexible free-standing electrode for supercapacitors. Mater Design, 2016, 108: 801–806

    Article  Google Scholar 

  18. Shadpour H, Musyimi H, Chen J, et al. Physiochemical properties of various polymer substrates and their effects on microchip electrophoresis performance. J Chromatography A, 2006, 1111: 238–251

    Article  Google Scholar 

  19. Wang S, Liu J, Lv M, et al. A low-cost, high-efficiency and high-flexibility surface modification technology for a black bisphenol a polycarbonate board. Appl Surf Sci, 2014, 314: 679–685

    Article  Google Scholar 

  20. Fan Y Q, Kong X P, Chai D P, et al. Low-cost and flexible film-based digital microfluidic devices. Micro Nano Lett, 2020, 15: 163–165

    Article  Google Scholar 

  21. Xu Z, Jiang F, Xu Z, et al. Novel prototyping method for microfluidic devices based on thermoplastic polyurethane microcapillary film. Microfluid Nanofluid, 2016, 20: 126

    Article  Google Scholar 

  22. White C E, Henderson C L. Development of improved photosensitive polycarbonate systems for the fabrication of microfluidic devices. J Vacuum Sci Tech B, 2003, 21: 2926–2930

    Article  Google Scholar 

  23. Wu C, Zhang T, Zhang J, et al. A new approach for an ultrasensitive tactile sensor covering an ultrawide pressure range based on the hierarchical pressure-peak effect. Nanoscale Horiz, 2020, 5: 541–552

    Article  Google Scholar 

  24. Wang S. Parameters optimization of plastic nylon parts formed by high speed steel turning tool. J Plast Eng, 2016, 23: 162–165

    Google Scholar 

  25. Wang J, Lou Y Y, Wang B, et al. Highly sensitive, breathable, and flexible pressure sensor based on electrospun membrane with assistance of AGNW/TPU as composite dielectric layer. Sensors, 2020, 20: 2459

    Article  Google Scholar 

  26. Cheng X, Pan F, Wang M, et al. Hybrid membranes for pervaporation separations. J Membrane Sci, 2017, 541: 329–346

    Article  Google Scholar 

  27. Xue B, Geng Y, Yan Y, et al. Rapid prototyping of microfluidic chip with burr-free pmma microchannel fabricated by revolving tip-based micro-cutting. J Mater Processing Tech, 2019, 277: 116468

    Article  Google Scholar 

  28. Zhu Z, Buck D, Guo X, et al. Effect of cutting speed on machinability of stone-plastic composite material. Sci Adv Mater, 2019, 11: 884–892

    Article  Google Scholar 

  29. Majumder H, Maity K. Application of GRNN and multivariate hybrid approach to predict and optimize WEDM responses for Ni-Ti shape memory alloy. Appl Soft Computing, 2018, 70: 665–679

    Article  Google Scholar 

  30. Lo J S, Jiang C T, Wu K L. Effect of slotted electrodes on improvement in machining performance of large-scale electrical discharge machining. Proc Institution Mech Engineers Part B-J Eng Manufacture, 2019, 233: 756–765

    Article  Google Scholar 

  31. Zhuang G, Li G Q, Li J, et al. Progress of the CFETR design. Nucl Fusion, 2019, 59: 112010

    Article  Google Scholar 

  32. Chiromawa N L, Ibrahim K. Fabrication of micro-array of fresnel rings on Si by electron beam lithography and reactive ion etching. Appl Phys A-Mater Sci Process, 2016, 122: 129

    Article  Google Scholar 

  33. Trieb F H. Waterjet cutting: State of the art and future trends. In: Proceedings of Pressure Vessels and Piping Conference of the American-Society-of-Mechanical-Engineers. Denver, CO, 2005. 5: 91–95

    Google Scholar 

  34. Jiang H, Meng D G. Experimental research on the specific energy consumption of rock breakage using different waterjet-assisted cutting heads. Adv Mater Sci Eng, 2018, 2018: 3853980

    Google Scholar 

  35. Veiko V, Karlagina Y, Moskvin M, et al. Metal surface coloration by oxide periodic structures formed with nanosecond laser pulses. Optics Lasers Eng, 2017, 96: 63–67

    Article  Google Scholar 

  36. Shanjin L, Yang W. An investigation of pulsed laser cutting of titanium alloy sheet. Optics Lasers Eng, 2006, 44: 1067–1077

    Article  Google Scholar 

  37. Yang L J, Wang Y, Tian Z G, et al. Yag laser cutting soda-lime glass with controlled fracture and volumetric heat absorption. Int J Machine Tools Manufacture, 2010, 50: 849–859

    Article  Google Scholar 

  38. Ito Y, Yoshizaki R, Miyamoto N, et al. Ultrafast and precision drilling of glass by selective absorption offiber-laser pulse into femtosecond-laser-induced filament. Appl Phys Lett, 2018, 113: 061101

    Article  Google Scholar 

  39. Luo Y, Wang X, Wu D. Quality investigation of alumina ceramic laser cutting based on vapor-to-melt ratio. J Laser Appl, 2018, 30: 032002

    Article  Google Scholar 

  40. Xing Y, Luo C, Wan Y, et al. Formation of bionic surface textures composed by micro-channels using nanosecond laser on Si3N4-based ceramics. Ceramics Int, 2021, 47: 12768–12779

    Article  Google Scholar 

  41. Wu C, Rong Y, Yang R. Thermal ablation regulation for ultraviolet (UV) nanosecond laser precision cutting of polycarbonate (PC) film. Optics Laser Tech, 2021, 143: 107365

    Article  Google Scholar 

  42. Wu C, Rong Y, Huang Y, et al. Precision cutting of polyvinyl chloride film by ultraviolet nanosecond laser. Mater Manufacturing Processes, 2021, 36: 1650–1657

    Article  Google Scholar 

  43. Xin G, Rong Y, Huang Y, et al. Process and mechanism of cutting thermoplastic polyurethane (TPU) film by nanosecond ultraviolet laser. J Mater Sci, 2021, 56: 16167–16180

    Article  Google Scholar 

  44. Wu C, Rong Y, Li M, et al. High-quality cutting of Polypropylene (PP) film by UV nanosecond laser based on thermal ablation. Optics Laser Tech, 2022, 147: 107600

    Article  Google Scholar 

  45. Rong Y, Huang Y, Lin C, et al. Stretchability improvement of flexiable electronics by laser micro-drilling array holes in PDMS film. Optics Lasers Eng, 2020, 134: 106307

    Article  Google Scholar 

  46. Wu C, Xu J, Zhang T, et al. Precision cutting of PDMS film with UV-nanosecond laser based on heat generation-diffusion regulation. Optics Laser Tech, 2022, 145: 107462

    Article  Google Scholar 

  47. Rong Y, Huang Y, Li M, et al. High-quality cutting polarizing film (POL) by 355 nm nanosecond laser ablation. Optics Laser Tech, 2021, 135: 106690

    Article  Google Scholar 

  48. Langdon G S, Gabriel S, von Klemperer C J, et al. Transient response and failure of medium density fibreboard panels subjected to air-blast loading. Composite Struct, 2021, 273: 114253

    Article  Google Scholar 

  49. Pramanik D, Kuar A S, Sarkar S, et al. Optimisation of edge quality on stainless steel 316L using low power fibre laser beam machining. Adv Mater Processing Technol, 2021, 7: 42–53

    Article  Google Scholar 

  50. Seo Y, Lee D, Pyo S. High-power fiber laser cutting for 50-mm-thick cement-based materials. Materials, 2020, 13: 1113

    Article  Google Scholar 

  51. Hu J, Zhu D. Experimental study on the picosecond pulsed laser cutting of carbon fiber-reinforced plastics. J Reinforced Plasts Compos, 2018, 37: 993–1003

    Article  Google Scholar 

  52. Madić M, Mladenović S, Gostimirović M, et al. Laser cutting optimization model with constraints: Maximization of material removal rate in CO2 laser cutting of mild steel. Proc Institution Mech Engineers Part B-J Eng Manufacture, 2020, 234: 1323–1332

    Article  Google Scholar 

  53. Mushtaq R T, Wang Y, Rehman M, et al. State-of-the-art and trends in CO2 laser cutting of polymeric materials—A review. Materials, 2020, 13: 3839

    Article  Google Scholar 

  54. Xin G, Wu C, Cao H, et al. Superhydrophobic TC4 alloy surface fabricated by laser micro-scanning to reduce adhesion and drag resistance. Surf Coatings Tech, 2020, 391: 125707

    Article  Google Scholar 

  55. Zhang W, Li R, Zheng H, et al. Laser-assisted printing of electrodes using metal-organic frameworks for micro-supercapacitors. Adv Funct Mater, 2021, 31: 2009057

    Article  Google Scholar 

  56. Adelmann B, Hellmann R. Rapid micro hole laser drilling in ceramic substrates using single mode fiber laser. J Mater Processing Tech, 2015, 221: 80–86

    Article  Google Scholar 

  57. Yu Z, Hu J, Li K. Investigating the multiple-pulse drilling on titanium alloy in picosecond laser. J Mater Processing Tech, 2019, 268: 10–17

    Article  Google Scholar 

  58. Chen N, Li H N, Wu J, et al. Advances in micro milling: From tool fabrication to process outcomes. Int J Machine Tools Manufacture, 2021, 160: 103670

    Article  Google Scholar 

  59. Nordin I, Okamoto Y, Okada A, et al. Effect of wavelength and pulse duration on laser micro-welding of monocrystalline silicon and glass. Appl Phys A, 2016, 122: 400

    Article  Google Scholar 

  60. Tur A, Cordovilla F, García-Beltrán Á, et al. Minimization of the thermal material effects on pulsed dynamic laser welding. J Mater Processing Tech, 2017, 246: 13–21

    Article  Google Scholar 

  61. Murakami A, Kitano H, Adachi H, et al. Universal processing technique for protein crystals using pulsed UV laser. Japanese J Appl Phys Part 2-Lett Exp Lett, 2004, 43: L873–L876

    Article  Google Scholar 

  62. Niino H, Kurosaki R, Gu B, et al. Laser cutting of carbon fiber reinforced plastics (CFRP) by UV pulsed laser ablation. In: Proceedings of Conference on Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVI. San Francisco, CA, 2011.792019

  63. Lassithiotaki M, Athanassiou A, Anglos D, et al. Photochemical effects in the UV laser ablation of polymers: Implications for laser restoration of painted artworks. Appl Phys A-Mater Sci Process, 1999, 69: 363–367

    Article  Google Scholar 

  64. Schmidt H, Ihlemann J, Wolff-Rottke B, et al. Ultraviolet laser ablation of polymers: Spot size, pulse duration, and plume attenuation effects explained. J Appl Phys, 1998, 83: 5458–5468

    Article  Google Scholar 

  65. Yingling Y G, Garrison B J. Photochemical induced effects in material ejection in laser ablation. Chem Phys Lett, 2002, 364: 237–243

    Article  Google Scholar 

  66. Zagdoun A, Casano G, Ouari O, et al. Large molecular weight nitroxide biradicals providing efficient dynamic nuclear polarization at temperatures up to 200 K. J Am Chem Soc, 2013, 135: 12790–12797

    Article  Google Scholar 

  67. Reta D, Chilton N F. Uncertainty estimates for magnetic relaxation times and magnetic relaxation parameters. Phys Chem Chem Phys, 2019, 21: 23567–23575

    Article  Google Scholar 

  68. Semak V, Matsunawa A. The role of recoil pressure in energy balance during laser materials processing. J Phys D-Appl Phys, 1999, 30: 2541–2552

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YouMin Rong.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52005206 & 51905191), the China Postdoctoral Science Foundation (Grant No. 2020TQ0110), the Ministry of Industry and Information Technology’s Special Project for High-quality Development of the Manufacturing Industry (Grant No. TC200H02H), the National Key R&D Program of China (Grant No. 2020YFB2007600), the Key Research & Development Plan of Hubei Province (Grant No. 2020BAB051), Guangdong HUST Industrial Technology Research Institute, Guangdong Provincial Key Laboratory of Manufacturing Equipment Digitization (Grant No. 2020B1212060014), and Guangdong Basic and Applied Basic Research Foundation (Grant No. 2020A1515011393).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Rong, Y., Huang, Y. et al. Laser cutting of thermoplastic film: Mechanism and processing technology. Sci. China Technol. Sci. 65, 2068–2078 (2022). https://doi.org/10.1007/s11431-022-2104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2104-5

Navigation