Skip to main content
Log in

Enhanced plasmonic absorption of Pt cuboctahedra-WO3 nanohybrids used as visible light photocatalysts for overall water splitting

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Localized surface plasmon resonance (LSPR) effects of nanoscale plasmonic metals/semiconductor composites have been extensively applied into visible light photocatalysis. However, Pt nanoparticles (NPs) with the visible LSPR absorption maxima have rarely been used as a photosensitizer to facilitate photocatalytic reactions, especially the photocatalytic overall water splitting (POWS) reaction, presumably because they feature weak light absorption. Herein, we present that the increased plasmonic absorption and local field enhancement can be achieved in the wide visible range by exploiting the simulated and experimental expressions of Pt nanocuboctahedra and Pt cuboctahedra-WO3 nanohybrids (Pt-WO3). First, monodisperse Pt cuboctahedra with different sizes, a hierarchical WO3 nanoarchitecture composed of radially patterned WO3 nanopillars, and Pt-WO3 were systematically synthesized. Subsequently, visible plasmonic Pt-WO3 photocatalysts were employed in the POWS tests and exhibited the significant activity enhancement in the visible light region. The apparent quantum efficiency (AQE) of greater than 7% within the range of visible light has been achieved for the optimal Pt-WO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, G. L.; Kozuka, H.; Yoko, T. Sol—gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles. Thin Solid Films 1996, 277, 147–154.

    CAS  Google Scholar 

  2. Tian, Y.; Tatsuma, T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 2005, 127, 7632–7637.

    CAS  Google Scholar 

  3. Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921.

    CAS  Google Scholar 

  4. Thomann, I.; Pinaud, B. A.; Chen, Z. B.; Clemens, B. M.; Jaramillo, T. F.; Brongersma, M. L. Plasmon enhanced solar-to-fuel energy conversion. Nano Lett. 2011, 11, 3440–3446.

    CAS  Google Scholar 

  5. Kale, M. J.; Avanesian, T.; Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 2014, 4, 116–128.

    CAS  Google Scholar 

  6. Bian, Z. F.; Tachikawa, T.; Zhang, P.; Fujitsuka, M.; Majima, T. Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. J. Am. Chem. Soc. 2014, 136, 458–465.

    CAS  Google Scholar 

  7. DuChene, J. S.; Sweeny, B. C.; Johnston-Peck, A. C.; Su, D.; Stach, E. A.; Wei, W. D. Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew. Chem., Int. Ed. 2014, 53, 7887–7891.

    CAS  Google Scholar 

  8. Melvin, A. A.; Illath, K.; Das, T.; Raja, T.; Bhattacharyya, S.; Gopinath, C. S. M-Au/TiO2 (M = Ag, Pd, and Pt) nanophotocatalyst for overall solar water splitting: Role of interfaces. Nanoscale 2015, 7, 13477–13488.

    CAS  Google Scholar 

  9. Valenti, M.; Jonsson, M. P.; Biskos, G.; Schmidt-Ott, A.; Smith, W. A. Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting. J. Mater. Chem. A 2016, 4, 17891–17912.

    CAS  Google Scholar 

  10. Wu, B. H.; Liu, D. Y.; Mubeen, S.; Chuong, T. T.; Moskovits, M.; Stucky, G. D. Anisotropic growth of TiO2 onto gold nanorods for plasmon-enhanced hydrogen production from water reduction. J. Am. Chem. Soc. 2016, 138, 1114–1117.

    CAS  Google Scholar 

  11. Li, K.; Hogan, N. J.; Kale, M. J.; Halas, N. J.; Nordlander, P.; Christopher, P. Balancing near-field enhancement, absorption, and scattering for effective antenna-reactor plasmonic photocatalysis. Nano Lett. 2017, 17, 3710–3717.

    CAS  Google Scholar 

  12. Liu, X. Q.; Iocozzia, J.; Wang, Y.; Cui, X.; Chen, Y. H.; Zhao, S. Q.; Li, Z.; Lin, Z. Q. Noble metal—metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci. 2017, 10, 402–434.

    CAS  Google Scholar 

  13. Wu, N. Q. Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: A review. Nanoscale 2018, 10, 2679–2696.

    CAS  Google Scholar 

  14. Aslam, U.; Chavez, S.; Linic, S. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat. Nanotechnol. 2017, 12, 1000–1005.

    CAS  Google Scholar 

  15. Ezendam, S.; Herran, M.; Nan, L.; Gruber, C.; Kang, Y. C.; Gröbmeyer, F.; Lin, R.; Gargiulo, J.; Sousa-Castillo, A.; Cortés, E. Hybrid plasmonic nanomaterials for hydrogen generation and carbon dioxide reduction. ACS Energy Lett. 2022, 7, 778–815.

    CAS  Google Scholar 

  16. Mubeen, S.; Lee, J.; Singh, N.; Krämer, S.; Stucky, G. D.; Moskovits, M. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 2013, 8, 247–251.

    CAS  Google Scholar 

  17. Tanaka, A.; Hashimoto, K.; Kominami, H. Visible-light-induced hydrogen and oxygen formation over Pt/Au/WO3 photocatalyst utilizing two types of photoabsorption due to surface plasmon resonance and band-gap excitation. J. Am. Chem. Soc. 2014, 136, 586–589.

    CAS  Google Scholar 

  18. Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379.

    CAS  Google Scholar 

  19. Palik, E. D. Handbook of Optical Constants of Solids; Academic Press: Orlando, 1985.

    Google Scholar 

  20. Creighton, J. A.; Eadon, D. G. Ultraviolet—visible absorption spectra of the colloidal metallic elements. J. Chem. Soc. Faraday Trans. 1991, 87, 3881–3891.

    CAS  Google Scholar 

  21. Manchon, D.; Lermé, J.; Zhang, T. P.; Mosset, A.; Jamois, C.; Bonnet, C.; Rye, J. M.; Belarouci, A.; Broyer, M.; Pellarin, M. Plasmonic coupling with most of the transition metals: A new family of broad band and near infrared nanoantennas. Nanoscale 2015, 7, 1181–1192.

    CAS  Google Scholar 

  22. Liu, X. E.; Wang, F. Y.; Wang, Q. Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. Phys. Chem. Chem. Phys. 2012, 14, 7894–7911.

    CAS  Google Scholar 

  23. Pesci, F. M.; Cowan, A. J.; Alexander, B. D.; Durrant, J. R.; Klug, D. R. Charge carrier dynamics on mesoporous WO3 during water splitting. J. Phys. Chem. Lett. 2011, 2, 1900–1903.

    CAS  Google Scholar 

  24. Zheng, J. Y.; Haider, Z.; Van, T. K.; Pawar, A. U.; Kang, M. J.; Kim, C. W.; Kang, Y. S. Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications. CrystEngComm 2015, 17, 6070–6093.

    CAS  Google Scholar 

  25. Liu, Y. W.; Liang, L.; Xiao, C.; Hua, X. M.; Li, Z.; Pan, B. C.; Xie, Y. Promoting photogenerated holes utilization in pore-rich WO3 ultrathin nanosheets for efficient oxygen-evolving photoanode. Adv. Energy Mater. 2016, 6, 1600437.

    Google Scholar 

  26. Dong, P. Y.; Hou, G. H.; Xi, X. G.; Shao, R.; Dong, F. WO3-based photocatalysts: Morphology control, activity enhancement, and multifunctional applications. Environ. Sci. Nano 2017, 4, 539–557.

    CAS  Google Scholar 

  27. Corby, S.; Francàs, L.; Selim, S.; Sachs, M.; Blackman, C.; Kafizas, A.; Durrant, J. R. Water oxidation and electron extraction kinetics in nanostructured tungsten trioxide photoanodes. J. Am. Chem. Soc. 2018, 140, 16168–16177.

    CAS  Google Scholar 

  28. Ren, Y. M.; Xu, Q.; Zheng, X. L.; Fu, Y. Z.; Wang, Z.; Chen, H. L.; Weng, Y. X.; Zhou, Y. C. Building of peculiar heterostructure of Ag/two-dimensional fullerene shell-WO3−x for enhanced photoelectrochemical performance. Appl. Catal. B: Environ. 2018, 231, 381–390.

    CAS  Google Scholar 

  29. Durán-Álvarez, J. C.; Del Angel, R.; Ramírez-Ortega, D.; Guerrero-Araque, D.; Zanella, R. An alternative method for the synthesis of functional Au/WO3 materials and their use in the photocatalytic production of hydrogen. Catal. Today 2020, 341, 49–58.

    Google Scholar 

  30. Cao, S.; Chan, T. S.; Lu, Y. R.; Shi, X. H.; Fu, B.; Wu, Z. J.; Li, H. M.; Liu, K.; Alzuabi, S.; Cheng, P. et al. Photocatalytic pure water splitting with high efficiency and value by Pt/porous brookite TiO2 nanoflutes. Nano Energy 2020, 67, 104287.

    CAS  Google Scholar 

  31. Bigall, N. C.; Härtling, T.; Klose, M.; Simon, P.; Eng, L. M.; Eychmüller, A. Monodisperse platinum nanospheres with adjustable diameters from 10 to 100 nm: Synthesis and distinct optical properties. Nano Lett. 2008, 8, 4588–4592.

    CAS  Google Scholar 

  32. Langhammer, C.; Yuan, Z.; Zorić, I.; Kasemo, B. Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett. 2006, 6, 833–838.

    CAS  Google Scholar 

  33. Wang, Z.; Inoue, Y.; Hisatomi, T.; Ishikawa, R.; Wang, Q.; Takata, T.; Chen, S. S.; Shibata, N.; Ikuhara, Y.; Domen, K. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nature Catal. 2018, 1, 756–763.

    CAS  Google Scholar 

  34. Wang, Q.; Nakabayashi, M.; Hisatomi, T.; Sun, S.; Akiyama, S.; Wang, Z.; Pan, Z. H.; Xiao, X.; Watanabe, T.; Yamada, T. et al. Oxysulfide photocatalyst for visible-light-driven overall water splitting. Nat. Mater. 2019, 18, 827–832.

    CAS  Google Scholar 

  35. Qi, Y.; Zhao, Y.; Gao, Y. Y.; Li, D.; Li, Z.; Zhang, F. X.; Li, C. Redox-based visible-light-driven Z-scheme overall water splitting with apparent quantum efficiency exceeding 10%. Joule 2018, 2, 2393–2402.

    CAS  Google Scholar 

  36. Kageshima, Y.; Gomyo, Y.; Matsuoka, H.; Inuzuka, H.; Suzuki, H.; Abe, R.; Teshima, K.; Domen, K.; Nishikiori, H. Z-scheme overall water splitting using ZnxCd1−xSe particles coated with metal cyanoferrates as hydrogen evolution photocatalysts. ACS Catal. 2021, 11, 8004–8014.

    CAS  Google Scholar 

  37. Chen, S. S.; Vequizo, J. J. M.; Hisatomi, T.; Nakabayashi, M.; Lin, L. H.; Wang, Z.; Yamakata, A.; Shibata, N.; Takata, T.; Yamada, T. et al. Efficient photocatalytic hydrogen evolution on single-crystalline metal selenide particles with suitable cocatalysts. Chem. Sci. 2020, 11, 6436–6441.

    CAS  Google Scholar 

  38. Tanaka, A.; Nakanishi, K.; Hamada, R.; Hashimoto, K.; Kominami, H. Simultaneous and stoichiometric water oxidation and Cr(VI) reduction in aqueous suspensions of functionalized plasmonic photocatalyst Au/TiO2-Pt under irradiation of green light. ACS Catal. 2013, 3, 1886–1891.

    CAS  Google Scholar 

  39. Silva, C. G.; Juárez, R.; Marino, T.; Molinari, R.; García, H. Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J. Am. Chem. Soc. 2011, 133, 595–602.

    Google Scholar 

  40. Warren, S. C.; Thimsen, E. Plasmonic solar water splitting. Energy Environ. Sci. 2012, 5, 5133–5146.

    CAS  Google Scholar 

  41. Tanaka, A.; Sakaguchi, S.; Hashimoto, K.; Kominami, H. Preparation of Au/TiO2 with metal cocatalysts exhibiting strong surface plasmon resonance effective for photoinduced hydrogen formation under irradiation of visible light. ACS Catal. 2013, 3, 79–85.

    CAS  Google Scholar 

  42. Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 2014, 8, 95–103.

    CAS  Google Scholar 

  43. Parkins, G. R.; Lawrence, W. E.; Christy, R. W. Intraband optical conductivity σ(ω, T) of Cu, Ag, and Au: Contribution from electron-electron scattering. Phys. Rev. B 1981, 23, 6408–6416.

    CAS  Google Scholar 

  44. Besteiro, L. V.; Yu, P.; Wang, Z. M.; Holleitner, A. W.; Hartland, G. V.; Wiederrecht, G. P.; Govorov, A. O. The fast and the furious: Ultrafast hot electrons in plasmonic metastructures. Size and structure matter. Nano Today 2019, 27, 120–145.

    CAS  Google Scholar 

  45. Wang, Z. L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 2000, 104, 1153–1175.

    CAS  Google Scholar 

  46. Callejas, J. F.; McEnaney, J. M.; Read, C. G.; Crompton, J. C.; Biacchi, A. J.; Popczun, E. J.; Gordon, T. R.; Lewis, N. S.; Schaak, R. E. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles. ACS Nano 2014, 8, 11101–11107.

    CAS  Google Scholar 

  47. Xu, Y.; Schoonen, M. A. A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000, 85, 543–556.

    CAS  Google Scholar 

  48. Weaver, J. H. Optical properties of Rh, Pd, Ir, and Pt. Phys. Rev. B 1975, 11, 1416–1425.

    CAS  Google Scholar 

  49. Wang, H.; Tam, F.; Grady, N. K.; Halas, N. J. Cu nanoshells: Effects of interband transitions on the nanoparticle plasmon resonance. J. Phys. Chem. B 2005, 109, 18218–18222.

    CAS  Google Scholar 

  50. Zorić, I.; Zäch, M.; Kasemo, B.; Langhammer, C. Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms. ACS Nano 2011, 5, 2535–2546.

    Google Scholar 

  51. Gong, L. B.; Chu, Q. Y.; Liu, X. Y.; Tan, Y. W. Plasmonic platinum nanoparticles-tungsten oxide nanoarchitectures as visible light photocatalysts for highly efficient overall water splitting. J. Mater. Chem. A, 2022, 10, 21161–21176.

    CAS  Google Scholar 

  52. Lukowski, M. A.; Daniel, A. S.; English, C. R.; Meng, F.; Forticaux, A.; Hamers, R. J.; Jin, S. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ. Sci. 2014, 7, 2608–2613.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Six Talent Peaks Project in Jiangsu Province (No. JNHB-043) and the Research Fund of State Key Laboratory of Materials-Oriented Chemical Engineering (No. ZK201713).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiwei Tan.

Electronic Supplementary Material

12274_2022_5175_MOESM1_ESM.pdf

Enhanced plasmonic absorption of Pt cuboctahedra-WO3 nanohybrids used as visible light photocatalysts for overall water splitting

Supplementary material, approximately 11.8 MB.

12274_2022_5175_MOESM3_ESM.pdf

Enhanced plasmonic absorption of Pt cuboctahedra-WO3 nanohybrids used as visible light photocatalysts for overall water splitting

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Tan, Y. Enhanced plasmonic absorption of Pt cuboctahedra-WO3 nanohybrids used as visible light photocatalysts for overall water splitting. Nano Res. 16, 5919–5928 (2023). https://doi.org/10.1007/s12274-022-5175-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5175-8

Keywords

Navigation