Skip to main content
Log in

Highly durable machine-learned waterproof electronic glove based on low-cost thermal transfer printing for amphibious wearable applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Gesture recording, modeling, and understanding based on a robust electronic glove (E-glove) are of great significance for efficient human-machine cooperation in harsh environments. However, such robust edge-intelligence interfaces remain challenging as existing E-gloves are limited in terms of integration, waterproofness, scalability, and interface stability between different components. Here, we report on the design, manufacturing, and application scenarios for a waterproof E-glove, which is of low cost, lightweight, and scalable for mass production, as well as environmental robustness, waterproofness, and washability. An improved neural network architecture is proposed to implement environment-adaptive learning and inference for hand gestures, which achieves an amphibious recognition accuracy of 100% in 26 categories by analyzing 2,600 hand gesture patterns. We demonstrate that the E-glove can be used for amphibious remote vehicle navigation via hand gestures, potentially opening the way for efficient human-human and human-machine cooperation in harsh environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wen, F.; Zhang, Z. X.; He, T. Y. Y.; Lee, C. AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove. Nat. Commun. 2021, 12, 5378.

    CAS  Google Scholar 

  2. Lan, N.; Hao, M. Z.; Niu, C. M.; Cui, H.; Wang, Y.; Zhang, T.; Fang, P.; Chou, C. H. Next-generation prosthetic hand: From biomimetic to biorealistic. Research 2021, 2021, 4675326.

    CAS  Google Scholar 

  3. Zhou, Z. H.; Chen, K.; Li, X. S.; Zhang, S. L.; Wu, Y. F.; Zhou, Y. H.; Meng, K. Y.; Sun, C. C.; He, Q.; Fan, W. J. et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 2020, 3, 571–578.

    Google Scholar 

  4. Yu, J. R.; Yang, X. X.; Sun, Q. J. Piezo/tribotronics toward smart flexible sensors. Adv. Intell. Syst. 2020, 2, 1900175.

    Google Scholar 

  5. Wen, F.; Sun, Z. D.; He, T. Y. Y.; Shi, Q. F.; Zhu, M. L.; Zhang, Z. X.; Li, L. H.; Zhang, T.; Lee, C. Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv. Sci. 2020, 7, 2000261.

    CAS  Google Scholar 

  6. Kim, K. K.; Ha, I.; Kim, M.; Choi, J.; Won, P.; Jo, S.; Ko, S. H. A deep-learned skin sensor decoding the epicentral human motions. Nat. Commun. 2020, 11, 2149.

    CAS  Google Scholar 

  7. Kumar, K. S.; Chen, P. Y.; Ren, H. L. A review of printable flexible and stretchable tactile sensors. Research 2019, 2019, 3018568.

    CAS  Google Scholar 

  8. Deng, W. L.; Yang, T.; Jin, L.; Yan, C.; Huang, H. C.; Chu, X.; Wang, Z. X.; Xiong, D.; Tian, G.; Gao, Y. Y. et al. Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy 2019, 55, 516–525.

    CAS  Google Scholar 

  9. Wang, S. H.; Oh, J. Y.; Xu, J.; Tran, H.; Bao, Z. N. Skin-inspired electronics: An emerging paradigm. Acc. Chem. Res. 2018, 51, 1033–1045.

    CAS  Google Scholar 

  10. Liu, M. W.; Zhang, Y. J.; Wang, J. C.; Qin, N.; Yang, H.; Sun, K.; Hao, J.; Shu, L.; Liu, J. R.; Chen, Q. et al. A star-nose-like tactile-olfactory bionic sensing array for robust object recognition in non-visual environments. Nat. Commun. 2022, 13, 79.

    CAS  Google Scholar 

  11. Wang, M.; Yan, Z.; Wang, T.; Cai, P. Q.; Gao, S. Y.; Zeng, Y.; Wan, C. J.; Wang, H.; Pan, L.; Yu, J. C. et al. Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat. Electron. 2020, 3, 563–570.

    Google Scholar 

  12. Liu, K.; Chen, C.; Jafari, R.; Kehtarnavaz, N. Fusion of inertial and depth sensor data for robust hand gesture recognition. IEEE Sens. J. 2014, 14, 1898–1903.

    Google Scholar 

  13. Zhao, H. X.; Zhou, Y. L.; Cao, S. T.; Wang, Y. F.; Zhang, J. X.; Feng, S. X.; Wang, J. C.; Li, D. C.; Kong, D. S. Ultrastretchable and washable conductive microtextiles by coassembly of silver nanowires and elastomeric microfibers for epidermal human-machine interfaces. ACS Mater. Lett. 2021, 3, 912–920.

    CAS  Google Scholar 

  14. Hughes, J.; Spielberg, A.; Chounlakone, M.; Chang, G.; Matusik, W.; Rus, D. A simple, inexpensive, wearable glove with hybrid resistive-pressure sensors for computational sensing, proprioception, and task identification. Adv. Intell. Syst. 2020, 2, 2000002.

    Google Scholar 

  15. Kadumudi, F. B.; Hasany, M.; Pierchala, M. K.; Jahanshahi, M.; Taebnia, N.; Mehrali, M.; Mitu, C. F.; Shahbazi, M. A.; Zsurzsan, T. G.; Knott, A. et al. The manufacture of unbreakable bionics via multifunctional and self-healing silk-graphene hydrogels. Adv. Mater. 2021, 33, 2100047.

    CAS  Google Scholar 

  16. Duan, S. S.; Yang, H. Y.; Hong, J. L.; Li, Y. H.; Lin, Y. C.; Zhu, D.; Lei, W.; Wu, J. A skin-beyond tactile sensor as interfaces between the prosthetics and biological systems. Nano Energy 2022, 102, 107665.

    CAS  Google Scholar 

  17. Duan, S. S.; Lin, Y. C.; Wang, Z. H.; Tang, J. Y.; Li, Y. H.; Zhu, D.; Wu, J.; Tao, L.; Choi, C. H.; Sun, L. T. et al. Conductive porous MXene for bionic, wearable, and precise gesture motion sensors. Research 2021, 2021, 9861467.

    CAS  Google Scholar 

  18. Sundaram, S.; Kellnhofer, P.; Li, Y. Z.; Zhu, J. Y.; Torralba, A.; Matusik, W. Learning the signatures of the human grasp using a scalable tactile glove. Nature 2019, 569, 698–702.

    CAS  Google Scholar 

  19. Matsuhisa, N.; Inoue, D.; Zalar, P.; Jin, H.; Matsuba, Y.; Itoh, A.; Yokota, T.; Hashizume, D.; Someya, T. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 2017, 16, 834–840.

    CAS  Google Scholar 

  20. Zheng, W.; Xie, Y. X.; Zhang, B. H.; Zhou, J.; Zhang, J. T. Dexterous robotic grasping of delicate fruits aided with a multi-sensory e-glove and manual grasping analysis for damage-free manipulation. Comput. Electron. Agric. 2021, 190, 106472.

    Google Scholar 

  21. Carneiro, M. R.; Tavakoli, M. Wearable pressure mapping through piezoresistive C-PU foam and tailor-made stretchable e-textile. IEEE Sens. J. 2021, 21, 27374–27384.

    CAS  Google Scholar 

  22. Kim, M. K.; Parasuraman, R. N.; Wang, L.; Park, Y.; Kim, B.; Lee, S. J.; Lu, N. S.; Min, B. C.; Lee, C. H. Soft-packaged sensory glove system for human-like natural interaction and control of prosthetic hands. NPG Asia Mater. 2019, 11, 43.

    CAS  Google Scholar 

  23. He, Z. L.; Zhou, G. H.; Byun, J. H.; Lee, S. K.; Um, M. K.; Park, B.; Kim, T.; Lee, S. B.; Chou, T. W. Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors. Nanoscale 2019, 11, 5884–5890.

    CAS  Google Scholar 

  24. Eom, J.; Jaisutti, R.; Lee, H.; Lee, W.; Heo, J. S.; Lee, J. Y.; Park, S. K.; Kim, Y. H. Highly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibers. ACS Appl. Mater. Interfaces 2017, 9, 10190–10197.

    CAS  Google Scholar 

  25. Li, G. Z.; Liu, S. Q.; Wang, L. Q.; Zhu, R. Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. Sci. Robot. 2020, 5, eabc8134.

    Google Scholar 

  26. Liu, L. P.; Jiao, Z. B.; Zhang, J. Q.; Wang, Y. C.; Zhang, C. C.; Meng, X. C.; Jiang, X. H.; Niu, S. C.; Han, Z. W.; Ren, L. Q. Bioinspired, superhydrophobic, and paper-based strain sensors for wearable and underwater applications. ACS Appl. Mater. Interfaces 2021, 13, 1967–1978.

    CAS  Google Scholar 

  27. Duan, S. S.; Lin, Y. C.; Zhang, C. Y.; Li, Y. H.; Zhu, D.; Wu, J.; Lei, W. Machine-learned, waterproof MXene fiber-based glove platform for underwater interactivities. Nano Energy 2022, 91, 106650.

    CAS  Google Scholar 

  28. Choi, Y.; Kang, K.; Son, D.; Shin, M. Molecular rationale for the design of instantaneous, strain-tolerant polymeric adhesive in a stretchable underwater human-machine interface. ACS Nano 2022, 16, 1368–1380.

    CAS  Google Scholar 

  29. Liu, X.; Zhang, Q.; Gao, G. H. Solvent-resistant and nonswellable hydrogel conductor toward mechanical perception in diverse liquid media. ACS Nano 2020, 14, 13709–13717.

    CAS  Google Scholar 

  30. Dai, Z. Y.; Chen, G.; Ding, S.; Lin, J.; Li, S. B.; Xu, Y.; Zhou, B. P. Facile formation of hierarchical textures for flexible, translucent, and durable superhydrophobic film. Adv. Funct. Mater. 2021, 31, 2008574.

    CAS  Google Scholar 

  31. Duan, S. S.; Wang, B. H.; Lin, Y. C.; Li, Y. H.; Zhu, D.; Wu, J.; Xia, J.; Lei, W.; Wang, B. P. Waterproof mechanically robust multifunctional conformal sensors for underwater interactive human-machine interfaces. Adv. Intell. Syst. 2021, 3, 2100056.

    Google Scholar 

  32. Ji, S. B.; Wan, C. J.; Wang, T.; Li, Q. S.; Chen, G.; Wang, J. W.; Liu, Z. Y.; Yang, H.; Liu, X. J.; Chen, X. D. Water-resistant conformal hybrid electrodes for aquatic endurable electrocardiographic monitoring. Adv. Mater. 2020, 32, 2001496.

    CAS  Google Scholar 

  33. Cao, Y.; Tan, Y. J.; Li, S.; Lee, W. W.; Guo, H. C.; Cai, Y. Q.; Wang, C.; Tee, B. C. K. Self-healing electronic skins for aquatic environments. Nat. Electron. 2019, 2, 75–82.

    Google Scholar 

  34. Tang, X. Y.; Yang, W. D.; Yin, S. R.; Tai, G. J.; Su, M.; Yang, J.; Shi, H. F.; Wei, D. P.; Yang, J. Controllable graphene wrinkle for a high-performance flexible pressure sensor. ACS Appl. Mater. Interfaces 2021, 13, 20448–20458.

    CAS  Google Scholar 

  35. Meng, K. Y.; Xiao, X.; Liu, Z. X.; Shen, S.; Tat, T.; Wang, Z. H.; Lu, C. Y.; Ding, W. B.; He, X. M.; Yang, J. et al. Kirigami-inspired pressure sensors for wearable dynamic cardiovascular monitoring. Adv. Mater. 2022, 34, 2202478.

    CAS  Google Scholar 

  36. Li, P.; Xie, L.; Su, M.; Wang, P. S.; Yuan, W.; Dong, C. H.; Yang, J. Skin-inspired large area iontronic pressure sensor with ultra-broad range and high sensitivity. Nano Energy 2022, 101, 107571.

    CAS  Google Scholar 

  37. Tai, G. J.; Wei, D. P.; Su, M.; Li, P.; Xie, L.; Yang, J. Force-sensitive interface engineering in flexible pressure sensors: A review. Sensors 2022, 22, 2652.

    CAS  Google Scholar 

  38. Ding, C.; Wang, J. Y.; Yuan, W.; Zhou, X. J.; Lin, Y.; Zhu, G. Q.; Li, J.; Zhong, T.; Su, W. M.; Cui, Z. Durability study of thermal transfer printed textile electrodes for wearable electronic applications. ACS Appl. Mater. Interfaces 2022, 14, 29144–29155.

    CAS  Google Scholar 

  39. Niu, B.; Yang, S.; Hua, T.; Tian, X.; Koo, M. Facile fabrication of highly conductive, waterproof, and washable e-textiles for wearable applications. Nano Res. 2021, 14, 1043–1052.

    CAS  Google Scholar 

  40. Yang, Y. N.; Shi, L. J.; Cao, Z. R.; Wang, R. R.; Sun, J. Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx (MXene) nanoparticle-nanosheet hybrid network. Adv. Funct. Mater. 2019, 29, 1807882.

    Google Scholar 

  41. Cheng, Y.; Wang, R. R.; Sun, J.; Gao, L. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater. 2015, 27, 7365–7371.

    CAS  Google Scholar 

  42. Li, Y. Q.; Zhu, W. B.; Yu, X. G.; Huang, P.; Fu, S. Y.; Hu, N.; Liao, K. Multifunctional wearable device based on flexible and conductive carbon sponge/polydimethylsiloxane composite. ACS Appl. Mater. Interfaces 2016, 8, 33189–33196.

    CAS  Google Scholar 

  43. Oberoi, S.; Sonawane, D.; Kumar, P. Effect of strain rate and filler size on mechanical behavior of a Cu filled elastomer based composite. Compos. Sci. Technol. 2016, 127, 185–192.

    CAS  Google Scholar 

  44. Zhou, W. P.; Yu, Y. C.; Bai, S.; Hu, A. M. Laser direct writing of waterproof sensors inside flexible substrates for wearable electronics. Opt. Laser Technol. 2021, 135, 106694.

    CAS  Google Scholar 

  45. Englehart, K.; Hudgins, B. A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 2003, 50, 848–854.

    Google Scholar 

  46. Smith, L. H.; Hargrove, L. J.; Lock, B. A.; Kuiken, T. A. Determining the optimal window length for pattern recognition-based myoelectric control: Balancing the competing effects of classification error and controller delay. IEEE Trans. Neural Syst. Rehabil. Eng. 2011, 19, 186–192.

    Google Scholar 

  47. Moin, A.; Zhou, A.; Rahimi, A.; Menon, A.; Benatti, S.; Alexandrov, G.; Tamakloe, S.; Ting, J.; Yamamoto, N.; Khan, Y. et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 2021, 4, 54–63.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 62075040 and 51603227), the National Key R&D Program of China (No. 2017YFE0112000), and Postgraduate Research& Practice Innovation Program of Jiangsu Province (No. KYCX22_0230).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Yuan or Jun Wu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, S., Wang, J., Lin, Y. et al. Highly durable machine-learned waterproof electronic glove based on low-cost thermal transfer printing for amphibious wearable applications. Nano Res. 16, 5480–5489 (2023). https://doi.org/10.1007/s12274-022-5077-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5077-9

Keywords

Navigation