Skip to main content
Log in

Electron microprobe analysis of Hf and Ti in ultrahigh temperature zircon: Optimized approaches and perspectives

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Zircon as a multi-objective typomorphic mineral commonly contains diverse trace elements with specific petrogenetic significances. The Hf abundance in zircon is sensitively indicative of melt fractionation during zircon growth on one hand, and on another, the Ti content is a robust temperature sensor of zircon crystallization and has been effectively utilized in thermometric estimation. A Hf-Ti negative correlation was previously reported in igneous zircons, and thus a potential Hf thermometry was then speculated. In this work, we performed reliable electron microprobe (EMP) measurements of Hf and Ti in ultrahigh temperature (UHT) zircons from the North China Craton, in optimizing point, line and grid analysis. The EMP contents of Hf and Ti both show a wide range of fluctuation owing to the smaller probe spot, and some of them are higher than the LA-ICPMS data. The Hf-Ti correlation in UHT zircons displays dual and thus complicated patterns in contrast with the previous consideration, which implicates some other factors controlling the geochemical behaviors of Hf and Ti in zircons. Generally, the estimated Ti temperatures based on the EMP analyses are obviously higher than the LA-ICPMS outcomes, but are well consistent with the actual peak condition of the parent rock. It explains the common underestimation of Ti temperatures in high-temperature metamorphic rocks, by using LA-ICPMS analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldwin J A, Brown M, Schmitz M D. 2007. First application of titanium-inzircon thermometry to ultrahigh-temperature metamorphism. Geology, 35: 295–298

    Article  Google Scholar 

  • Barth A P, Wooden J L. 2010. Coupled elemental and isotopic analyses of polygenetic zircons from granitic rocks by ion microprobe, with implications for melt evolution and the sources of granitic magmas. Chem Geol, 277: 149–159

    Article  Google Scholar 

  • Black L P, Kamo S L, Allen C M, Aleinikoff J N, Davis D W, Korsch R J, Foudoulis C. 2003. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chem Geol, 200: 155–170

    Article  Google Scholar 

  • Black L P, Kamo S L, Allen C M, Davis D W, Aleinikoff J N, Valley J W, Mundil R, Campbell I H, Korsch R J, Williams I S, Foudoulis C. 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem Geol, 205: 115–140

    Article  Google Scholar 

  • Brown M, Johnson T. 2018. Secular change in metamorphism and the onset of global plate tectonics. Am Mineral, 103: 181–196

    Article  Google Scholar 

  • Cherniak D J, Hanchar J M, Watson E B. 1997. Diffusion of tetravalent cations in zircon. Contrib Mineral Petrol, 127: 383–390

    Article  Google Scholar 

  • Cherniak D J, Watson E B. 2003. Diffusion in zircon. Rev Mineral Geochem, 53: 113–143

    Article  Google Scholar 

  • Cherniak D J, Watson E B. 2007. Ti diffusion in zircon. Chem Geol, 242: 470–483

    Article  Google Scholar 

  • Claiborne L L, Miller C F, Walker B A, Wooden J L, Mazdab F K, Bea F. 2006. Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: An example from the Spirit Mountain batholith, Nevada. Mineral Mag, 70: 517–543

    Article  Google Scholar 

  • Claiborne L L, Miller C F, Wooden J L. 2010. Trace element composition of igneous zircon: A thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contrib Mineral Petrol, 160: 511–531

    Article  Google Scholar 

  • Compston W, Williams I S, Meyer C. 1984. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J Geophys Res, 89: B525–B534

    Article  Google Scholar 

  • Corfu F, Hanchar J M, Hoskin P W O, Kinny P. 2003. Atlas of zircon textures. Rev Mineral Geochem, 53: 469–500

    Article  Google Scholar 

  • Cui J Q, Yang S Y, Jiang S Y, Xie J. 2019. Improved accuracy for trace element analysis of Al and Ti in quartz by electron probe microanalysis. Microsc Microanal, 25: 47–57

    Article  Google Scholar 

  • Ferry J M, Watson E B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol, 154: 429–437

    Article  Google Scholar 

  • Fournelle J, Hanchar J M. 2013. Electron microprobe analysis of Hf in zircon: Suggestions for improved accuracy of a difficult measurement. San Francisco: American Geophysical Union, Fall Meeting Abstract, V44B-05

    Google Scholar 

  • Fu B, Page F Z, Cavosie A J, Fournelle J, Kita N T, Lackey J S, Wilde S A, Valley J W. 2008. Ti-in-zircon thermometry: Applications and limitations. Contrib Mineral Petrol, 156: 197–215

    Article  Google Scholar 

  • Gao X Y, Zheng Y F. 2011. On the Zr-in-rutile and Ti-in-zircon geothermometers (in Chinese). Acta Petrol Sin, 27: 417–432

    Google Scholar 

  • Grimes C B, John B E, Kelemen P B, Mazdab F K, Wooden J L, Cheadle M J, Hanghøj K, Schwartz J J. 2007. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology, 35: 643–646

    Article  Google Scholar 

  • Grimes C B, Wooden J L, Cheadle M J, John B E. 2015. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contrib Mineral Petrol, 170: 46

    Article  Google Scholar 

  • Guo J H, Chen Y, Peng P, Liu F, Chen L, Zhang L Q. 2006. Sapphirine granulite from Daqingshan area, Inner Mongolia—1.85 Ga ultrahigh temperature (UHT) metamorphism. Nanjing: Proceedings of National Conference on Petrology and Geodynamics in China. 215–218

    Google Scholar 

  • Harley S L. 1989. The origins of granulites: A metamorphic perspective. Geol Mag, 126: 215–247

    Article  Google Scholar 

  • Harley S L. 2008. Refining the P-T records of UHT crustal metamorphism. J Metamorph Geol, 26: 125–154

    Article  Google Scholar 

  • Harley S L, Kelly N M. 2007. Zircon tiny but timely. Elements, 3: 13–18

    Article  Google Scholar 

  • Hoskin P W O, Rodgers K A. 1996. Raman spectral shift in the isomorphous series (Zr1−xHfx)SiO4. Eur J Inorg Chem, 33: 1111–1121

    Google Scholar 

  • Hoskin P W O. 1998. Minor and trace element analysis of natural zircon (ZrSiO4) by SIMS and laser ablation ICPMS: A consideration and comparison of two broadly competitive techniques. J Trace Microprobe Tech, 16: 301–326

    Google Scholar 

  • Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem, 53: 27–62

    Article  Google Scholar 

  • Harrison T M, Schmitt A K. 2007. High sensitivity mapping of Ti distributions in Hadean zircons. Earth Planet Sci Lett, 261: 9–19

    Article  Google Scholar 

  • Hawkesworth C J, Kemp A I S. 2006. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem Geol, 226: 144–162

    Article  Google Scholar 

  • Jiao S J, Guo J H, Mao Q, Zhao R F. 2011. Application of Zr-in-rutile thermometry: A case study from ultrahigh-temperature granulites of the Khondalite belt, North China Craton. Contrib Mineral Petrol, 162: 379–393

    Article  Google Scholar 

  • Kelsey D E, Hand M. 2015, On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geosci Front, 6: 311–356

    Article  Google Scholar 

  • Kohn M J, Corrie S L, Markley C. 2015. The fall and rise of metamorphic zircon. Am Mineral, 100: 897–908

    Article  Google Scholar 

  • Li X H, Tang G Q, Gong B, Yang Y H, Hou K J, Hu Z C, Li Q L, Liu Y, Li W X. 2013. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes. Chin Sci Bull, 58: 4647–4654

    Article  Google Scholar 

  • Li X, Wei C. 2017. Ultrahigh-temperature metamorphism in the Tuguiwula area, Khondalite Belt, North China Craton. J Metamorph Geol, 36: 489–509

    Article  Google Scholar 

  • Li X, Zhang L, Wei C, Slabunov A I, Bader T. 2018. Quartz and orthopyroxene exsolution lamellae in clinopyroxene and the metamorphic P-T path of Belomorian eclogites. J Metamorph Geol, 36: 1–22

    Article  Google Scholar 

  • Li X. 2021. Several perspectives on microprobe trace elements analysis (in Chinese). Geol Bull China, 27: 306–316

    Google Scholar 

  • Li X. 2023. Electron probe microanalysis of Hf and Ti in zircon: Significance and advantage (in Chinese). Rocks Miner Anal, 42: 89–101

    Google Scholar 

  • Liu S, Li J. 2007. Review of ultrahigh-temperature (UHT) metamorphism study: A case from North China Craton (in Chinese). Earth Sci Front, 14: 131–137

    Google Scholar 

  • Liu S J, Li J H, Santosh M. 2010. First application of the revised Ti-in-zircon geothermometer to Paleoproterozoic ultrahigh-temperature granulites of Tuguiwula, Inner Mongolia, North China Craton. Contrib Mineral Petrol, 159: 225–235

    Article  Google Scholar 

  • Peng P, Guo J, Zhai M, Bleeker W. 2010. Paleoproterozoic gabbronoritic and granitic magmatism in the northern margin of the North China craton: Evidence of crust-mantle interaction. Precambrian Res, 183: 635–659

    Article  Google Scholar 

  • Rubatto D. 2017. Zircon: The metamorphic mineral. Rev Mineral Geochem, 83: 261–295

    Article  Google Scholar 

  • Scherer E E, Whitehouse M J, Munker C. 2007. Zircon as a monitor of crustal growth. Elements, 3: 19–24

    Article  Google Scholar 

  • Sláma J, Košler J, Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S A, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N, Whitehouse M J. 2008. Plešovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol, 249: 1–35

    Article  Google Scholar 

  • Santosh M, Tsunogae T, Ohyama H, Sato K, Li J H, Liu S J. 2008. Carbonic metamorphism at ultrahigh-temperatures: Evidence from North China Craton. Earth Planet Sci Lett, 266: 149–165

    Article  Google Scholar 

  • Santosh M, Kusky T. 2010. Origin of paired high pressureâultrahigh-temperature orogens: A ridge subduction and slab window model. Terra Nova, 22: 35–42

    Article  Google Scholar 

  • Santosh M, Liu S J, Tsunogae T, Li J H. 2012. Paleoproterozoic ultrahigh-temperature granulites in the North China Craton: Implications for tectonic models on extreme crustal metamorphism. Precambrian Res, 222–223: 77–106

    Article  Google Scholar 

  • Shannon R D. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A, 32: 751–767

    Article  Google Scholar 

  • Speer J A. 1980. Orthosilicates Zircon. In: Hanchar J M, Hoskin P W O, eds. Reviews in Mineralogy and Geochemistry. Washington DC: Mineralogical Society of America. 67–112

    Google Scholar 

  • Tang M, Rudnick R L, McDonough W F, Bose M, Goreva Y. 2017. Multimode Li diffusion in natural zircons: Evidence for diffusion in the presence of step-function concentration boundaries. Earth Planet Sci Lett, 474: 110–119

    Article  Google Scholar 

  • Valley J W. 2003. Oxygen isotopes in zircon. Rev Mineral Geochem, 53: 343–385

    Article  Google Scholar 

  • Wang B, Wei C J, Tian W, Fu B. 2020. UHT metamorphism peaking above 1100°C with slow cooling: Insights from pelitic granulites in the jining complex, North China Craton. J Petrol, 61: egaa070

    Article  Google Scholar 

  • Wang B, Wei C J, Tian W. 2021. Evolution of spinel-bearing ultrahigh-temperature granulite in the Jining complex, North China Craton: Constrained by phase equilibria and Monte Carlo methods. Miner Petrol, 115: 283–297

    Article  Google Scholar 

  • Wang X, Griffin W L, O’Reilly S Y, Zhou X M, Xu X S, Jackson S E, Pearson N J. 2002. Morphology and geochemistry of zircons from late Mesozoic igneous complexes in coastal SE China: Implications for petrogenesis. Mineral Mag, 66: 235–251

    Article  Google Scholar 

  • Watson E B, Harrison T M. 2005. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science, 308: 841–844

    Article  Google Scholar 

  • Watson E B, Wark D A, Thomas J B. 2006. Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol, 151: 413–433

    Article  Google Scholar 

  • Wark D A, Miller C F. 1993. Accessory mineral behavior during differentiation of a granite suite: Monazite, xenotime and zircon in the Sweetwater Wash pluton, southeastern California, U.S.A. Chem Geol, 110: 49–67

    Article  Google Scholar 

  • Wei C J. 2016. Granulite facies metamorphism and petrogenesis of granite (II): Quantitative modeling of the HT-UHT phase equilibria for metapelites and the petrogenesis of S-type granite (in Chinese). Acta Petrol Sin, 32: 1625–1643

    Google Scholar 

  • Wei C, Guan X, Dong J. 2017. HT-UHT metamorphism of metabasites and the petrogenesis of TTGs (in Chinese). Acta Petrol Sin, 33: 1381–1404

    Google Scholar 

  • Wu Y, Zheng Y. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chin Sci Bull, 49: 1554–1569

    Article  Google Scholar 

  • Wiedenbeck M, Hanchar J M, Peck W H, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L, Fiebig J, Franchi I, Girard J P, Greenwood R C, Hinton R, Kita N, Mason P R D, Norman M, Ogasawara M, Piccoli P M, Rhede D, Satoh H, Schulz-Dobrick B, Skår O, Spicuzza M, Terada K, Tindle A, Togashi S, Vennemann T, Xie Q, Zheng Y F. 2004. Further characterisation of the 91500 zircon crystal. Geostand Geoanalyt Res, 28: 9–39

    Article  Google Scholar 

  • Xu C Z. 1990. Principle of Electron Microprobe Analysis (in Chinese). Beijing: Science Press. 510

    Google Scholar 

  • Yang W, Lin Y T, Hao J L, Zhang J C, Hu S, Ni H W. 2016. Phosphorus-controlled trace element distribution in zircon revealed by NanoSIMS. Contrib Mineral Petrol, 171: 28

    Article  Google Scholar 

  • Yuan H L, Gao S, Dai M N, Zong C L, Günther D, Fontaine G H, Liu X M, Diwu C R. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chem Geol, 247: 100–118

    Article  Google Scholar 

  • Zhai M G. 2013. The main old lands in China and assembly of Chinese unified continent. Sci China Earth Sci, 56: 1829–1852

    Article  Google Scholar 

  • Zhao G, Wilde S A, Cawood P A, Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res, 107: 45–73

    Article  Google Scholar 

  • Zhao G, Sun M, Wilde S A, Sanzhong L. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res, 136: 177–202

    Article  Google Scholar 

  • Zhao G C. 2009. Metamorphic evolution of major tectonic units in the basement of the North China Craton: Key issues and discussion. Acta Petrol Sin, 25: 1772–1792

    Google Scholar 

  • Zhao G C, Wilde S A, Guo J H, Cawood P A, Sun M, Li X P. 2010. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton. Precambrian Res, 177: 266–276

    Article  Google Scholar 

  • Zou X Y, Jiang J L, Qin K Z, Zhang Y G, Yang W, Li X H. 2021. Progress in the principle and application of zircon trace element. Acta Petrol Sin, 37: 985–999

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank two anonymous reviewers for their valuable and constructive comments that have greatly improved this manuscript. This work was supported by the National Natural Science Foundation of China (Grant No. 41872190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, B. & Wei, C. Electron microprobe analysis of Hf and Ti in ultrahigh temperature zircon: Optimized approaches and perspectives. Sci. China Earth Sci. 66, 985–996 (2023). https://doi.org/10.1007/s11430-022-1039-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1039-3

Keywords

Navigation