Skip to main content
Log in

The Paleozoic Huoshenmiao iron skarn deposit in the Tongbai area of North Qinling Orogen, China: Insights from garnet U-Pb dating and geological constraints

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The Qinling Orogen is a composite orogenic belt that can be subdivided into the North and South Qinling, broadly separated by the Shangdan suture zone. These two orogenic belts were generated by subduction-collisional processes in the Early Paleozoic and Late Triassic, respectively. During the Late Jurassic to Early Cretaceous, the eastern portion of the Qinling Orogen was tectonically reactivated due to westerly subduction of the Izanagi plate underneath the East China continental margin. The Qinling Orogen is well-endowed with numerous Au, Mo, Ag-Pb-Zn deposits that predominantly formed in the Late Triassic to Early Cretaceous, with rare Paleozoic varieties documented. In this study, we present garnet and zircon U-Pb dating results to show that the Huoshenmiao iron skarn deposit in the Tongbai area of North Qinling orogenic belt formed in the Early Silurian and is genetically related to subduction-related magmatism. The Huoshenmiao deposit consists of lenticular and stratiform orebodies that contain massive or densely disseminated magnetite variably associated with garnet, diopside, epidote, hornblende, and actinolite. Garnets from iron ores are andradite and grossular in composition (Ad83.1Gr13.3-Ad86.5Gr10.2) and characterized by enrichment in light rare earth elements (ΣLREE=57.85–103.82 ppm) and depletion in heavy rare earth elements (ΣHREE=5.50–11.34 ppm), with significantly positive Eu and Ce anomalies (δEu of 1.09–1.89 and δCe of 1.39–1.69). These compositional signatures are distinctly different from those of garnets in the ore-hosting metamorphic rocks that are typically dominated by almandine, spessartine and grossular (Al47.4Sp30.4Gr13.8-Al51.9Sp24.8Gr17.6), depleted in LREE (0.14–0.69 ppm), enriched in HREE (95.68–841.60 ppm) and have pronounced negative Eu anomalies (δEu=0.24–0.51). In addition, garnets from iron ores of the Huoshenmiao deposit contain abundant daughter mineral-bearing, multiphase fluid inclusions, further confirming their hydrothermal origin. Two samples of those hydrothermal garnets yield U-Pb dates of 437±9 Ma and 437±10 Ma (2σ), revealing a Paleozoic mineralization event that has long been ignored and rarely documented. These garnet dates agree well with zircon U-Pb dates of 438±4 Ma to 436±3 Ma for a gabbroic diorite and 430±4 Ma for a granite intrusion in close proximity of the mine, supporting a possible genetic link between the iron mineralization and Early Silurian magmatism. The Paleozoic intrusions are enriched in large ion lithophile elements (LILEs: Ba, K, Sr) and LREEs, depleted in high field strength elements (HFSEs: Nb, Ta, P, Ti), have whole-rock (87Sr/86Sr)i, εNd(t), and zircon εHf(t) values of 0.7039–0.7042, 3.32–4.33, and 13.0–14.9, respectively. These geochemical and isotopic characteristics suggest that the Paleozoic intrusions were affiliated with arc magmatism triggered by subduction of the Shangdan oceanic plate in the Early Paleozoic. Recognition of the Silurian Huoshenmiao iron skarn deposit opens a new window for exploration of Paleozoic mineral resources in the Tongbai area and other portions of the North Qinling Orogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdallsamed M I M, Wu Y B, Zhang W, Zhou G, Wang H, Yang S. 2017. Early Paleozoic high-Mg granodiorite from the Erlangping unit, North Qinling Orogen, Central China: Partial melting of metasomatic mantle during the initial back-arc opening. Lithos, 288–289: 282–294

    Article  Google Scholar 

  • Allen R L, Lundstrom I, Ripa M, Christofferson H. 1996. Facies analysis of a 1.9 Ga, continental margin, back-arc, felsic caldera province with diverse Zn-Pb-Ag-(Cu-Au) sulfide and Fe oxide deposits, Bergslagen Region, Sweden. Econ Geol, 91: 979–1008

    Article  Google Scholar 

  • Barth M G, McDonough W F, Rudnick R L. 2000. Tracking the budget of Nb and Ta in the continental crust. Chem Geol, 165: 197–213

    Article  Google Scholar 

  • Blichert-Toft J, Chauvel C, Albarède F. 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by Magnetic Sector-Multiple Collector ICP-MS. Contrib Mineral Petrol, 127: 248–260

    Article  Google Scholar 

  • Burisch M, Gerdes A, Meinert L D, Albert R, Seifert T, Gutzmer J. 2019. The essence of time-fertile skarn formation in the Variscan Orogenic Belt. Earth Planet Sci Lett, 519: 165–170

    Article  Google Scholar 

  • Cao H W, Zhang S T, Santosh M, Zheng L, Tang L, Li D, Zhang X H, Zhang Y H. 2015. The Luanchuan Mo-W-Pb-Zn-Ag magmatic-hydrothermal system in the East Qinling metallogenic belt, China: Constrains on metallogenesis from C-H-O-S-Pb isotope compositions and Rb-Sr isochron ages. J Asian Earth Sci, 111: 751–780

    Article  Google Scholar 

  • Cao M P, Yao J M, Deng X H, Yang F J, Mao G Z, Mathur R. 2017. Diverse and multistage Mo, Au, Ag-Pb-Zn and Cu deposits in the Xiong’er Terrane, East Qinling: From Triassic Cu mineralization. Ore Geol Rev, 81: 565–574

    Article  Google Scholar 

  • Chang Z S, Shu Q H, Meinert L D. 2019. Skarn deposits of China. In: Chang Z S, Goldfard R J, eds. Mineral Deposits of China. Society of Economic Geologists. 189–234

  • Chen H Y, Cooke D R, Baker M J. 2013. Mesozoic iron oxide copper-gold mineralization in the central Andes and the Gondwana supercontinent breakup. Econ Geol, 108: 37–44

    Article  Google Scholar 

  • Chen H, Wu C. 2020. Metallogenesis and major challenges of porphyry copper systems above subduction zones. Sci China Earth Sci, 63: 899–918

    Article  Google Scholar 

  • Cheng H, Xu N X. 2020. Garnet geochronology of metamorphic rocks (in Chinese with English abstract). Adv Earth Sci, 35: 991–1005

    Google Scholar 

  • Corfu F, Hanchar J M, Hoskin P W O, Kinny P. 2003. Atlas of zircon textures. Rev Mineral Geochem, 53: 469–500

    Article  Google Scholar 

  • Davidson J P. 1996. Deciphering mantle and crustal signatures in subduction zone magmatism. Geophys Monogr, 96: 251–262

    Google Scholar 

  • Deng J, Wang Q F. 2016. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework. Gondwana Res, 36: 219–274

    Article  Google Scholar 

  • Deng X D, Li J W, Luo T, Wang H Q. 2017. Dating magmatic and hydrothermal processes using andradite-rich garnet U-Pb geochronometry. Contrib Mineral Petrol, 172: 71

    Article  Google Scholar 

  • Deng X H, Chen Y J, Santosh M, Zhao G C, Yao J M. 2013a. Metallogeny during continental outgrowth in the Columbia supercontinent: Isotopic characterization of the Zhaiwa Mo-Cu system in the North China Craton. Ore Geol Rev, 51: 43–56

    Article  Google Scholar 

  • Deng X H, Chen Y J, Santosh M, Yao J M. 2013b. Genesis of the 1.76 Ga Zhaiwa Mo-Cu and its link with the Xiong’er volcanics in the North China Craton: Implications for accretionary growth along the margin of the Columbia supercontinent. Precambrian Res, 227: 337–348

    Article  Google Scholar 

  • Deng X H, Chen Y J, Santosh M, Yao J M. 2013c. Re-Os geochronology, fluid inclusions and genesis of the 0.85 Ga Tumen molybdenite-fluorite deposit in Eastern Qinling, China: Implications for pre-Mesozoic Mo enrichment and tectonic setting. Geol J, 48: 484–497

    Article  Google Scholar 

  • Dhuime B, Hawkesworth C, Cawood P. 2011. When continents formed. Science, 331: 154–155

    Article  Google Scholar 

  • Dong Y P, Zhang G W, Neubauer F, Liu X M, Genser J, Hauzenberger C. 2011. Tectonic evolution of the Qinling Orogen, China: Review and synthesis. J Asian Earth Sci, 41: 213–237

    Article  Google Scholar 

  • Dong Y P, Zhang X N, Liu X M, Li W, Chen Q, Zhang G W, Zhang H F, Yang Z, Sun S S, Zhang F F. 2015. Propagation tectonics and multiple accretionary processes of the Qinling Orogen. J Asian Earth Sci, 104: 84–98

    Article  Google Scholar 

  • Dong Y P, Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Res, 29: 1–40

    Article  Google Scholar 

  • Dong Y P, Sun S S, Santosh M, Zhao J, Sun J P, He D F, Shi X H, Hui B, Cheng C, Zhang G W. 2021. Central China Orogenic Belt and amalgamation of East Asian continents. Gondwana Res, https://doi.org/10.1016/j.gr.2021.03.006

  • Duan Z, Gleeson S A, Gao W S, Wang F Y, Li C J, Li J W 2020 Garnet U-Pb dating of the Yinan Au-Cu skarn deposit, Luxi district, North China Craton: Implications for district-wide coeval Au-Cu and Fe skarn mineralization. Ore Geol Rev, 118: 103310

    Article  Google Scholar 

  • Fan G H, Li J W, Deng X D, Gao W S, Li S Y. 2021. Age and origin of the Dongping Au-Te deposit in the North China Craton revisited: Evidence from paragenesis, geochemistry, and in situ U-Pb geochronology of garnet. Econ Geol, 116: 963–985

    Article  Google Scholar 

  • Fisher C M, Vervoort J D, Hanchar J M. 2014. Guidelines for reporting zircon Hf isotopic data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data. Chem Geol, 363: 125–133

    Article  Google Scholar 

  • Gaspar M, Knaack C, Meinert L D, Moretti R. 2008. REE in skarn systems: A LA-ICP-MS study of garnets from the Crown Jewel gold deposit. Geochim Cosmochim Acta, 72: 185–205

    Article  Google Scholar 

  • Gevedon M, Seman S, Barnes J D, Lackey J S, Stockli D F. 2018. Unraveling histories of hydrothermal systems via U-Pb laser ablation dating of skarn garnet. Earth Planet Sci Lett, 498: 237–246

    Article  Google Scholar 

  • Goldfarb R J, Groves D I, Gardoll S. 2001. Orogenic gold and geologic time: A global synthesis. Ore Geol Rev, 18: 1–75

    Article  Google Scholar 

  • Goldfarb R J, Taylor R D, Collins G S, Goryachev N A, Orlandini O F. 2014. Phanerozoic continental growth and gold metallogeny of Asia. Gondwana Res, 25: 48–102

    Article  Google Scholar 

  • Goldfarb R J, Groves D I. 2015. Orogenic gold: Common or evolving fluid and metal sources through time. Lithos, 233: 2–26

    Article  Google Scholar 

  • Goldfarb R J, Qiu K F, Deng J, Chen Y J, Yang L Q. 2019. Orogenic gold deposits of China. In: Chang Z S, Goldfard R J, eds. Mineral Deposits of China. Society of Economic Geologists. 22: 263–324

  • Groves D I, Santosh M, Deng J, Wang Q F, Yang L Q, Zhang L. 2020. A holistic model for the origin of orogenic gold deposits and its implications for exploration. Miner Depos, 55: 275–292

    Article  Google Scholar 

  • Hacker B R, Ratschbacher L, Liou J G. 2004. Subduction, collision and exhumation in the ultrahigh-pressure Qinling-Dabie orogen. Geol Soc Lond Spec Publ, 226: 157–175

    Article  Google Scholar 

  • Hofmann A W, Jochum K P, Seufert M, White W M. 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth Planet Sci Lett, 79: 33–45

    Article  Google Scholar 

  • Horstwood M S A, Košler J, Gehrels G, Jackson S E, McLean N M, Paton C, Pearson N J, Sircombe K, Sylvester P, Vermeesch P, Bowring J F, Condon D J, Schoene B. 2016. Community-derived standards for LA-ICP-MS U-(Th-)Pb geochronology-uncertainty propagation, age interpretation and data reporting. Geostand Geoanal Res, 40: 311–332

    Article  Google Scholar 

  • Hu F Y, Liu S W, Ducea M N, Chapman J B, Wu F Y, Kusky T. 2020. Early Mesozoic magmatism and tectonic evolution of the Qinling Orogen: Implications for oblique continental collision. Gondwana Res, 88: 296–332

    Article  Google Scholar 

  • Hu Z C, Gao S, Liu Y S, Hu S H, Chen H H, Yuan H L. 2008. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. J Anal At Spectrom, 23: 1093–1101

    Article  Google Scholar 

  • Hu Z C, Liu Y S, Gao S, Liu W G, Zhang W, Tong X R, Lin L, Zong K Q, Li M, Chen H H, Zhou L, Yang L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. J Anal At Spectrom, 27: 1391–1399

    Article  Google Scholar 

  • Hu Z C, Zhang W, Liu Y S, Gao S, Li M, Zong K Q, Chen H H, Hu S H. 2015. “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: Application to lead isotope analysis. Anal Chem, 87: 1152–1157

    Article  Google Scholar 

  • Jamtveit B, Hervig R L. 1994. Constraints on transport and kinetics in hydrothermal systems from zoned garnet crystals. Science, 263: 505–508

    Article  Google Scholar 

  • Jiang S H, Nie F J, Fang D H, Liu Y F, Zhang W Y, Xu D Q, Zhang Z J. 2009a. Geochronology of major gold and silver deposits in the Weishancheng area, Tongbai County, Henan Province (in Chinese with English abstract). Miner Depos, 28: 63–72

    Google Scholar 

  • Jiang S H, Nie F J, Fang D H, Liu Y F. 2009b. Geochronology and geochemical features of the main intrusive rocks in the Weishancheng area, Tongbai County, Henan (in Chinese with English abstract). Acta Geol Sin, 83: 1011–1029

    Google Scholar 

  • Jiang Y H, Jiang S Y, Ling H F, Dai B Z. 2006. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: Geochemical and Sr-Nd-Pb-Hf isotopic constraints. Earth Planet Sci Lett, 241: 617–633

    Article  Google Scholar 

  • Jin C, Chen W T, Gao X Y, Li X C, Bao Z W, Zhao T P. 2019. Origin of the Wangpingxigou Pb-Zn deposit in East Qinling Orogenic Belt, China: Distal response to the giant Donggou porphyry Mo system? Ore Geol Rev, 109: 101–116

    Article  Google Scholar 

  • Knipping J L, Bilenker L D, Simon A C, Reich M, Barra F, Deditius A P, Lundstrom C, Bindeman I, Munizaga R. 2015a. Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. Geology, 43: 591–594

    Article  Google Scholar 

  • Knipping J L, Bilenker L D, Simon A C, Reich M, Barra F, Deditius A P, Wälle M, Heinrich C A, Holtz F, Munizaga R. 2015b. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochim Cosmochim Acta, 171: 15–38

    Article  Google Scholar 

  • Knipping J L, Webster J D, Simon A C, Holtz F. 2019. Accumulation of magnetite by flotation on bubbles during decompression of silicate magma. Sci Rep, 9: 3852

    Article  Google Scholar 

  • Kogiso T. 2007. A geochemical and petrological view of mantle plume. In: Yuen D A, Maruyama S, Karato S I, Windley B F, eds. Superplumes: Beyond Plate Tectonics. Dordrecht: Springer. 165–186

    Chapter  Google Scholar 

  • Lee B, Zhu L M, Zhang G W, Guo B, Gong H J, Yao A P. 2010. Geological characteristics, metallogenic background, and genesis of the Tongyu VHMS copper deposit in the west part of the North Qinling, Shaanxi Province. Sci China Earth Sci, 53: 1460–1485

    Article  Google Scholar 

  • Li D F, Fu Y, Sun X M. 2018. Onset and duration of Zn-Pb mineralization in the Talate Pb-Zn(-Fe) skarn deposit, NW China: Constraints from spessartine U-Pb dating. Gondwana Res, 63: 117–128

    Article  Google Scholar 

  • Li J, Qiu J J, Sun Y L. 2009. Re-Os isotope dating of the Yindonggou Ag-Au-Mo deposit, Henan province and its implication for Caledonian orogenic-metallogenic event (in Chinese with English abstract). Acta Petrol Sin, 25: 2763–2768

    Google Scholar 

  • Li N, Chen Y J, Santosh M, Yao J M, Sun Y L, Li J. 2011. The 1.85 Ga Mo mineralization in the Xiong’er terrane, China: Implications for metallogeny associated with assembly of the Columbia supercontinent. Precambrian Res, 186: 220–232

    Article  Google Scholar 

  • Li N, Chen Y J, Deng X H, Yao J M. 2014. Fluid inclusion geochemistry and ore genesis of the Longmendian Mo deposit in the East Qinling Orogen: Implication for migmatitic-hydrothermal mo-mineralization. Ore Geol Rev, 63: 520–531

    Article  Google Scholar 

  • Li N, Chen Y J, Santosh M, Pirajno F. 2018. Late Mesozoic granitoids in the Qinling Orogen, Central China, and tectonic significance. Earth-Sci Rev, 182: 141–173

    Article  Google Scholar 

  • Li S Z, Jahn B M, Zhao S J, Dai L M, Li X Y, Suo Y H, Guo L L, Wang Y M, Liu X C, Lan H Y, Zhou Z Z, Zheng Q L, Wang P C. 2017. Triassic southeastward subduction of North China Block to South China Block: Insights from new geological, geophysical and geochemical data. Earth-Sci Rev, 166: 270–285

    Article  Google Scholar 

  • Li Z K, Bi S J, Li J W, Zhang W, Cooke D R, Selby D. 2017. Distal Pb-Zn-Ag veins associated with the world-class Donggou porphyry Mo deposit, southern North China Craton. Ore Geol Rev, 82: 232–251

    Article  Google Scholar 

  • Lin J, Liu Y S, Yang Y H, Hu Z C. 2016. Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios. Solid Earth Sci, 1: 5–27

    Article  Google Scholar 

  • Liu J J, Liu C H, Carranza E J M, Li Y J, Mao Z H, Wang J P, Wang Y H, Zhang J, Zhai D G, Zhang H F, Shan L, Zhu L M, Lu R K. 2015. Geological characteristics and ore-forming process of the gold deposits in the Western Qinling region, China. J Asian Earth Sci, 103: 40–69

    Article  Google Scholar 

  • Liu L, Liao X Y, Wang Y W, Wang C, Santosh M, Yang M, Zhang C L, Chen D L. 2016. Early Paleozoic tectonic evolution of the North Qinling Orogenic Belt in Central China: Insights on continental deep subduction and multiphase exhumation. Earth-Sci Rev, 159: 58–81

    Article  Google Scholar 

  • Liu X C, Jahn B M, Hu J, Li S Z, Liu X, Song B. 2011. Metamorphic patterns and SHRIMP zircon ages of medium-to-high grade rocks from the Tongbai Orogen, Central China: Implications for multiple accretion/collision processes prior to terminal continental collision. J Metamorph Geol, 29: 979–1002

    Article  Google Scholar 

  • Liu X C, Jahn B M, Li S Z, Liu Y S. 2013. U-Pb zircon age and geochemical constraints on tectonic evolution of the Paleozoic accretionary orogenic system in the Tongbai orogen, central China. Tectonophysics, 599: 67–88

    Article  Google Scholar 

  • Liu X C, Li S Z, Jahn B M. 2015. Tectonic evolution of the Tongbai-Hong’an Orogen in Central China: from oceanic subduction/accretion to continent-continent collision. Sci China Earth Sci, 58: 1477–1496

    Article  Google Scholar 

  • Liu Y F, Jiang S H, Fang D H, Liu Yan. 2008. Zircon SHRIMP U-Pb dating of Laowan granite in Tongbai area, Henan Province, and its geological implications (in Chinese with English abstract). Acta Petrol Mineral, 27: 519–523

    Google Scholar 

  • Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G, Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol, 257: 34–43

    Article  Google Scholar 

  • Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol, 51: 537–571

    Article  Google Scholar 

  • Ludwig K. 2010. Isoplot/Ex version 4.1: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication No. 4

  • Manning C. 2004. The chemistry of subduction-zone fluids. Earth Planet Sci Lett, 223: 1–16

    Article  Google Scholar 

  • Mao J W, Qiu Y M, Goldfarb R J, Zhang Z C, Garwin S, Ren F S. 2002. Geology, distribution, and classification of gold deposits in the Western Qinling belt, Central China. Miner Depos, 37: 352–377

    Article  Google Scholar 

  • Mao J W, Xie G Q, Bierlein F, Qü W J, Du A D, Ye H S, Pirajno F, Li H M, Guo B J, Li Y F, Yang Z Q. 2008. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochim Cosmochim Acta, 72: 4607–4626

    Article  Google Scholar 

  • Mao J W, Pirajno F, Xiang J F, Gao J J, Ye H S, Li Y F, Guo B J. 2011. Mesozoic molybdenum deposits in the east Qinling-Dabie orogenic belt: Characteristics and tectonic settings. Ore Geol Rev, 43: 264–293

    Article  Google Scholar 

  • Marschall H R, Schumacher J C. 2012. Arc magmas sourced from mélange diapirs in subduction zones. Nat Geosci, 5: 862–867

    Article  Google Scholar 

  • McCulloch M T, Gamble J A. 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett, 102: 358–374

    Article  Google Scholar 

  • Meinert L D, Dipple G M, Nicolescu S. 2005. 100th anniversary special paper: World skarn deposits. Econ Geol, 100: 299–336

    Google Scholar 

  • Meng Q R, Zhang G W. 1999. Timing of collision of the North and South China Blocks: Controversy and reconciliation. Geology, 27: 123–126

    Article  Google Scholar 

  • Meng Q R. 2017. Origin of the Qinling Mountains (in Chinese). Sci China Earth Sci, 47: 412–420

    Google Scholar 

  • Park C, Song Y, Kang I M, Shim J, Chung D, Park C S. 2017. Metasomatic changes during periodic fluid flux recorded in grandite garnet from the Weondong W-skarn deposit, South Korea. Chem Geol, 451: 135–153

    Article  Google Scholar 

  • Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol, 145: 325–394

    Article  Google Scholar 

  • Ratschbacher L, Hacker B R, Calvert A, Webb L E, Grimmer J C, McWilliams M O, Ireland T, Dong S, Hu J. 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, geochronology, and deformation history. Tectonophysics, 366: 1–53

    Article  Google Scholar 

  • Regional Geological Survey Team of Henan Geological Bureau. 1968. 1:200000 regional geological survey report (Tongbai County) (in Chinese). Part II, 1–73

  • Regional Geological Survey Team of Henan Geological Bureau. 1975. 1:50,000 regional geological survey report-northern Tongbai County, Henan province (mineral resources) (in Chinese). 1–83

  • Reich M, Simon A C, Deditius A, Barra F, Chryssoulis S, Lagas G, Tardani D, Knipping J, Bilenker L, Sánchez-Alfaro P, Roberts M P, Munizaga R. 2016. Trace element signature of pyrite from the Los Colorados iron oxide-apatite (IOA) deposit, Chile: A missing link between Andean IOA and iron oxide copper-gold systems? Econ Geol, 111: 743–761

    Article  Google Scholar 

  • Ren L, Liang H, Bao Z, Huang W. 2021. Early Paleozoic magmatic “flareups” in Western Qinling orogeny, China: New insights into the convergence history of the North and South China Blocks at the northern margin of Gondwana. Lithos, 380–381: 105833

    Article  Google Scholar 

  • Rudnick R L, Gao S. 2003. Composition of the continental crust. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. Pergamon: Oxford. 1–64

    Google Scholar 

  • Russell W A, Papanastassiou D A, Tombrello T A. 1978. Ca isotope fractionation on the earth and other solar system materials. Geochim Cosmochim Acta, 42: 1075–1090

    Article  Google Scholar 

  • Salnikova E B, Chakhmouradian A R, Stifeeva M V, Reguir E P, Kotov A B, Gritsenko Y D, Nikiforov A V. 2019. Calcic garnets as a geochronological and petrogenetic tool applicable to a wide variety of rocks. Lithos, 338–339: 141–154

    Article  Google Scholar 

  • Seman S, Stockli D F, McLean N M. 2017. U-Pb geochronology of grossular-andradite garnet. Chem Geol, 460: 106–116

    Article  Google Scholar 

  • Sillitoe R H. 2003. Iron oxide-copper-gold deposits: An Andean view. Miner Depos, 38: 787–812

    Article  Google Scholar 

  • Smith M P, Henderson P, Jefries T E R, Long J, Williams C T. 2004. The rare earth elements and uranium in garnets from the Beinn an Dubhaich Aureole, Skye, Scotland, UK: Constraints on processes in a dynamic hydrothermal system. J Petrol, 45: 457–484

    Article  Google Scholar 

  • Stifeeva M V, Salnikova E B, Arzamastsev A A, Kotov A B, Grozdev V Y. 2020. Calcific garnets as a source of information on the age of ultramafic alkaline intrusions in the Kola magmatic province. Petrology, 28: 62–72

    Article  Google Scholar 

  • Sun S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol Soc Lond Spec Publ, 42: 313–345

    Article  Google Scholar 

  • Sun Z Y, Wang J B, Wang Y W, Long L L. 2020. Zircon and garnet U-Pb dating and in situ trace element of magnetite from the Hongyuntan Fe deposit, Eastern Tianshan, NW China. Ore Geol Rev, 127: 103813

    Article  Google Scholar 

  • Sun Z Y, Wang J B, Wang Y W, Long L L. 2021. Multigeneration garnets record the fluid evolution of volcanic-hosted skarn iron deposit: Study of the Yamansu deposit, NW China. Ore Geol Rev, 132: 104004

    Article  Google Scholar 

  • Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell. 312

    Google Scholar 

  • Taylor S R, McLennan S M. 1995. The geochemical evolution of the continental crust. Rev Geophys, 33: 241–265

    Article  Google Scholar 

  • Tera F, Wasserburg G J. 1972. U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett, 14: 281–304

    Article  Google Scholar 

  • Thirlwall M F, Smith T E, Graham A M, Theodorou N, Hollings P, Davidson J P, Arculus R J. 1994. High field strength element anomalies in arc lavas: Source or process? J Petrol, 35: 819–838

    Article  Google Scholar 

  • Vermeesch P. 2018. IsoplotR: A free and open toolbox for geochronology. Geosci Front, 9: 1479–1493

    Article  Google Scholar 

  • Wafforn S, Seman S, Kyle J R, Stockli D, Leys C, Sonbait D, Cloos M. 2018. Andradite garnet U-Pb geochronology of the big gossan skarn, Ertsberg-Grasberg mining district, Indonesia. Econ Geol, 113: 769–778

    Article  Google Scholar 

  • Wang H, Wu Y B, Qin Z W, Zhu L Q, Liu Q, Liu X C, Gao S, Wijbrans J R, Zhou L, Gong H J, Yuan H L. 2013. Age and geochemistry of Silurian gabbroic rocks in the Tongbai orogen, central China: Implications for the geodynamic evolution of the North Qinling arc-back-arc system. Lithos, 179: 1–15

    Article  Google Scholar 

  • Wang H, Wu Y B, Gao S, Qin Z W, Hu Z C, Zheng J P, Yang S H. 2016. Continental growth through accreted oceanic arc: Zircon Hf-O isotope evidence for granitoids from the Qinling orogen. Geochim Cosmochim Acta, 182: 109–130

    Article  Google Scholar 

  • Wang H, Wu Y B, Yang J H, Qin Z W, Duan R C, Zhou L, Yang S H. 2017. Crustal basement controls granitoid magmatism, and implications for generation of continental crust in subduction zones: A Sr-Nd-Hf-O isotopic study from the Paleozoic Tongbai orogen, central China. Lithos, 282–283: 298–315

    Article  Google Scholar 

  • Wang X X, Wang T, Zhang C L. 2013. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process. J Asian Earth Sci, 72: 129–151

    Article  Google Scholar 

  • Wei C J, Wu Y X, Ni Y Y, Chen B, Wang S G. 1999. Characteristics and geological significance of eclogites in the Tongbai area, Henan Province (in Chinese). Chin Sci Bull, 44: 1882–1885

    Article  Google Scholar 

  • Wei C, Zheng Y. 2020. Metamorphism, fluid behavior and magmatism in oceanic subduction zones. Sci China Earth Sci, 63: 52–77

    Article  Google Scholar 

  • Wu Y B, Zheng Y F. 2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong’an-Dabie-Sulu orogenic belt in central China. Gondwana Res, 23: 1402–1428

    Article  Google Scholar 

  • Xiong X, Zhu L M, Li B, Zhang G W, Gong H J, Zheng J, Jiang H. 2015. Zircon U-Pb geochronology and geochemical characteristics of the volcanic host rocks from the Tongyu VHMS copper deposit in the western North Qinling Orogen and their geological significance. Acta Geol Sin-Engl Ed, 89: 1926–1946

    Article  Google Scholar 

  • Xue S, Ling M X, Liu Y L, Kang Q Q, Huang R F, Zhang Z K, Sun W D. 2020. The formation of the giant Huayangchuan U-Nb deposit associated with carbonatite in the Qingling Orogenic Belt. Ore Geol Rev, 122: 103498

    Article  Google Scholar 

  • Yan S, Zhou R J, Niu H C, Feng Y X, Nguyen A D, Zhao Z H, Yang W B, Dong Q, Zhao J X. 2020. LA-MC-ICP-MS U-Pb dating of low-U garnets reveals multiple episodes of skarn formation in the volcanichosted iron mineralization system, Awulale belt, Central Asia. GSA Bull, 132: 1031–1045

    Article  Google Scholar 

  • Yang M Z, Fu J J, Ren A Q. 2015. Recognition of Yanshanian magmatichydrothermal gold and polymetallic gold mineralization in the Laowan gold metallogenic belt, Tongbai Mountains: New evidence from structural controls, geochronology and geochemistry. Ore Geol Rev, 69: 58–72

    Article  Google Scholar 

  • Yang M Z, Jiang S Y, Zhao K D, Zhou Y Y, Zhang D. 2021. Two episodic Au-Mo mineralization in the Laowan district from the Tongbai orogenic belt of China: Constraints from U-Pb dating of zircon, rutile, and REE phosphate, and Re-Os dating of molybdenite. Gondwana Res, 96: 142–162

    Article  Google Scholar 

  • Yuan F, Jiang S Y, Liu J J, Liu G, Zhang S, Sha Y Z. 2020. Origin and evolution of uraniferous pegmatite: A case study from the Xiaohuacha granite-pegmatite system and related country rocks in the Shangdan uranium mineralization district of North Qinling Orogenic Belt, China. Lithos, 356–357: 105379

    Article  Google Scholar 

  • Zang Z J, Dong L L, Liu W, Zhao H, Wang X S, Cai K D, Wan B. 2019. Garnet U-Pb and O isotopic determinations reveal a shear-zone induced hydrothermal system. Sci Rep, 9: 10382

    Article  Google Scholar 

  • Zhang G W, Zhang B R, Yuan X C, Xiao Q H. 2001. Qinling Orogenic Belt and Continental Dynamics (in Chinese). Beijing: Science Press. 1–855

    Google Scholar 

  • Zhang J, Chen Y J, Li G P, Li Z L, Wang Z G. 2004. Characteristics of ore geology and fluid inclusion of the Yindonggou silver deposit, Neixiang county, Henan province: implication for metallogenic type (in Chinese with English abstract). J Mineral Petrol, 24: 55–64

    Google Scholar 

  • Zhang J, Chen Y J, Pirajno F, Deng J, Chen H Y, Wang C M. 2013. Geology, C-H-O-S-Pb isotope systematics and geochronology of the Yindongpo gold deposit, Tongbai Mountains, central China: Implication for ore genesis. Ore Geol Rev, 53: 343–356

    Article  Google Scholar 

  • Zhang S T, Chen H Y, Shu Q H, Zhang Y, Chu G B, Chen J M, Tan J. 2019. Unveiling growth histories of multi-generational garnet in a single skarn deposit via newly-developed LA-ICP-MS U-Pb dating of grandite. Gondwana Res, 73: 65–76

    Article  Google Scholar 

  • Zhang Z, Li H, Li J, Song X Y, Hu H, Li L, Chai F, Hou T, Xu D. 2021. Geological settings and metallogenesis of high-grade iron deposits in China. Sci China Earth Sci, 64: 691–715

    Article  Google Scholar 

  • Zhao Y M, Lin W W, Bi C S, Li D X, Jiang C J. 1990. Skarn Deposits in China (in Chinese). Beijing: Geological Publishing House. 1–354

    Google Scholar 

  • Zheng F, Dai L Q, Zhao Z F, Zheng Y F, Xu Z. 2019. Recycling of paleooceanic crust: Geochemical evidence from Early Paleozoic mafic igneous rocks in the Tongbai Orogen, Central China. Lithos, 328–329: 312–327

    Article  Google Scholar 

  • Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 328: 5–48

    Article  Google Scholar 

Download references

Acknowledgements

Two anonymous reviewers provided constructive and insightful comments that have helped us clarify and improve the presentation of the paper. This paper has also benefited greatly from the editorial comments and suggestions by Prof. Huayong Chen, for which we acknowledge. Our thanks extend to Prof. Yongfei Zheng for handling our paper. Xiaolei Nie and Meijun Yang from the Center of Material Research and Analysis, Wuhan University of Technology, helped in the EMP analysis. Zheng Liu from the Wuhan Sample Solution Analytical Technology Co., Ltd., helped with zircon Hf isotopic analysis. This work was supported by the National Natural Science Foundation of China (Grant No. 41772081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, M., Hu, H., Li, J. et al. The Paleozoic Huoshenmiao iron skarn deposit in the Tongbai area of North Qinling Orogen, China: Insights from garnet U-Pb dating and geological constraints. Sci. China Earth Sci. 64, 2172–2189 (2021). https://doi.org/10.1007/s11430-021-9829-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9829-0

Keywords

Navigation