Skip to main content
Log in

Dating magmatic and hydrothermal processes using andradite-rich garnet U–Pb geochronometry

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Andradite-rich garnet is a common U-bearing mineral in a variety of alkalic igneous rocks and skarn deposits, but has been largely neglected as a U–Pb chronometer. In situ laser ablation-inductively coupled plasma mass spectrometry U–Pb dates of andradite-rich garnet from a syenite pluton and two iron skarn deposits in the North China craton demonstrate the suitability and reliability of the mineral in accurately dating magmatic and hydrothermal processes. Two hydrothermal garnets from the iron skarn deposits have homogenous cores and zoned rims (Ad86Gr11 to Ad98Gr1) with 22–118 ppm U, whereas one magmatic garnet from the syenite is texturally and compositionally homogenous (Ad70Gr22 to Ad77Gr14) and has 0.1–20 ppm U. All three garnets have flat time-resolved signals obtained from depth profile analyses for U, indicating structurally bound U. Uranium is correlated with REE in both magmatic and hydrothermal garnets, indicating that the incorporation of U into the garnet is largely controlled by substitution mechanisms. Two hydrothermal garnets yielded U–Pb dates of 129 ± 2 (2σ; MSWD = 0.7) and 130 ± 1 Ma (2σ; MSWD = 0.5), indistinguishable from zircon U–Pb dates of 131 ± 1 and 129 ± 1 Ma for their respective ore-related intrusions. The magmatic garnet has a U–Pb age of 389 ± 3 Ma (2σ; MSWD = 0.6), consistent with a U–Pb zircon date of 388 ± 2 Ma for the syenite. The consistency between the garnet and zircon U–Pb dates confirms the reliability and accuracy of garnet U–Pb dating. Given the occurrence of andradite-rich garnet in alkaline and ultramafic magmatic rocks and hydrothermal ore deposits, our results highlight the potential utilization of garnet as a powerful U–Pb geochronometer for dating magmatism and skarn-related mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Austrheim H, Prestvik T (2008) Rodingitization and hydration of the oceanic lithosphere as developed in the Leka ophiolite, north–central Norway. Lithos 104:177–198

    Article  Google Scholar 

  • Bao Z, Sun W, Li C, Zhao Z (2014) U-Pb dating of hydrothermal zircon from the Dongping gold deposit in North China: constraints on the mineralization processes. Ore Geol Rev 61:107–119

    Article  Google Scholar 

  • Barrie CT (1990) U-Pb garnet and titanite age for the Bristol Township lamprophyre suite, western Abitibi Subprovince, Canada. Can J Earth Sci 27:1451–1456

    Article  Google Scholar 

  • Batumike JM, Griffin WL, Belousova EA, Pearson NJ, O’Reilly SY, Shee SR (2008) LAM-ICPMS U-Pb dating of kimberlitic perovskite: eocene–oligocene kimberlites from the Kundelungu Plateau, D. R Congo. Earth Planet Sci Lett 267:609–619

    Article  Google Scholar 

  • Burton KW, O’Nions RK (1992) The timing of mineral growth across a regional metamorphic sequence. Nature 357:235–238

    Article  Google Scholar 

  • Burton KW, Kohn MJ, Cohen AS, O’Nions RK (1995) The relative diffusion of Pb, Nd, Sr and O in garnet. Earth Planet Sci Lett 133:199–211

    Article  Google Scholar 

  • Cisse M, Lü X, Algeo TJ, Cao X, Li H, Wei M, Yuan Q, Chen M (2017) Geochronology and geochemical characteristics of the Dongping ore-bearing granite, North China: Sources and implications for its tectonic setting. Ore Geol Rev. (in press) doi:10.1016/j.oregeorev.2016.07.006

  • Deng X-D, Li J-W, Wen G (2015) U-Pb geochronology of hydrothermal zircons from the Early Cretaceous iron skarn deposits in the Handan–Xingtai District, North China Craton. Econ Geol 110:2159–2180

    Article  Google Scholar 

  • DeWolf CP, Zeissler CJ, Halliday AN, Mezger K, Essene EJ (1996) The role of inclusions in U-Pb and Sm-Nd garnet geochronology: stepwise dissolution experiments and trace uranium mapping by fission track analysis. Geochim Cosmochim Acta 60:121–134

    Article  Google Scholar 

  • Dongre AN, Viljoen KS, Rao NVC, Gucsik A (2016) Origin of Ti-rich garnets in the groundmass of Wajrakarur field kimberlites, southern India: insights from EPMA and Raman spectroscopy. Miner Petrol 110:295–307

    Article  Google Scholar 

  • El Korh A (2014) Ablation behaviour of allanites during U-Th–Pb dating using a quadrupole ICP-MS coupled to a 193 nm excimer laser. Chem Geol 371:46–59

    Article  Google Scholar 

  • Gaspar M, Knaack C, Meinert LD, Moretti R (2008) REE in skarn systems: a LA-ICP-MS study of garnets from the Crown Jewel gold deposit. Geochim Cosmochim Acta 72:185–205

    Article  Google Scholar 

  • Heaman LM, LeCheminant AN (2001) Anomalous U-Pb systematics in mantle-derived baddeleyite xenocrysts from Ile Bizard: evidence for high temperature radon diffusion. Chem Geol 172:77–93

    Article  Google Scholar 

  • Horstwood MSA, Košler J, Gehrels G, Jackson SE, McLean NM, Paton C, Pearson NJ, Sircombe K, Sylvester P, Vermeesch P, Bowring JF, Condon DJ, Schoene B (2016) Community-derived standards for LA-ICP-MS U-(Th-)Pb geochronology-uncertainty propagation, age interpretation and data reporting. Geostand Geoanal Res 40:311–332

    Article  Google Scholar 

  • Hu Z, Gao S, Liu Y, Hu S, Chen H, Yuan H (2008) Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. J Anal At Spectrom 23:1093–1101

    Article  Google Scholar 

  • Hu Z, Liu Y, Gao S, Xiao S, Zhao L, Günther D, Li M, Zhang W, Zong K (2012) A “wire” signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis. Spectrochim Acta Part B 78:50–57

    Article  Google Scholar 

  • Huggins FE, Virgo D, Huckenholz HG (1977) Titanium-containing silicate garnets; II, The crystal chemistry of melanites and schorlomites. Am Miner 62:646–665

    Google Scholar 

  • IGSNC HGI (Institute of Geological Sciences of North China and Hebei Geological Institute), (1976) Exploration report on the Handan–Xingtai type iron ore deposits in the Taihang Mountain areas. People’s Republic of China: Hubei Province, p 154 (in Chinese)

  • Ismail R, Ciobanu CL, Cook NJ, Teale GS, Giles D, Mumm AS, Wade B (2014) Rare earths and other trace elements in minerals from skarn assemblages, Hillside iron oxide–copper–gold deposit, Yorke Peninsula, South Australia. Lithos 184–187:456–477

    Article  Google Scholar 

  • Jamtveit B, Hervig RL (1994) Constraints on transport and kinetics in hydrothermal systems from zoned garnet crystals. Science 263:505–508

    Article  Google Scholar 

  • Jiang SH, Nie FJ (2000) 40Ar/39Ar geochronology study on the alkaline intrusive complex and related gold deposits, northwestern Hebei, China. Geol Rev 46:621–627 (in Chinese with English abstract)

    Google Scholar 

  • Jiang N, Liu Y, Zhou W, Yang J, Zhang S (2007) Derivation of Mesozoic adakitic magmas from ancient lower crust in the North China craton. Geochim Cosmochim Acta 71:2591–2608

    Article  Google Scholar 

  • Jung S, Mezger K (2003) U-Pb garnet chronometry in high-grade rocks—case studies from the central Damara orogen (Namibia) and implications for the interpretation of Sm-Nd garnet ages and the role of high U-Th inclusions. Contrib Miner Petrol 146:382–396

    Article  Google Scholar 

  • Kwak TAP, Abeysinghe PB (1987) Rare earth and uranium minerals present daughter crystals in fluid inclusions, Mary Kathleen U-REE skarn, Queensland, Australia. Miner Mag 51:665–670

    Article  Google Scholar 

  • Lentz DR (1996) U, Mo, and REE mineralization in late-tectonic granitic pegmatites, southwestern Grenville Province, Canada. Ore Geol Rev 11:197–227

    Article  Google Scholar 

  • Li CM, Deng JF, Chen LH, Su SG, Li HM, Hu SL (2010) Two periods of zircon from Dongping gold deposit in Zhangjiakou-Xuanhua area, northern margin of North China: constraints on metallogenic chronology. Miner Depos 29:265–275 (in Chinese with English abstract)

    Google Scholar 

  • Li J-W, Bi S-J, Selby D, Chen L, Vasconcelos P, Thiede D, Zhou M-F, Zhao X-F, Li Z-K, Qiu H-L (2012) Giant Mesozoic gold provinces related to the destruction of the North China craton. Earth Planet Sci Lett 349–350:26–37

    Article  Google Scholar 

  • Li S-R, Santosh M, Zhang H-F, Shen J-F, Dong G-C, Wang J-Z, Zhang J-Q (2013) Inhomogeneous lithospheric thinning in the central North China Craton: zircon U-Pb and S-He-Ar isotopic record from magmatism and metallogeny in the Taihang Mountains. Gondwana Res 23:141–160

    Article  Google Scholar 

  • Lima SM, Corfu F, Neiva AMR, Ramos JMF (2012) U-Pb ID-TIMS dating applied to U-rich inclusions in garnet. Am Miner 97:800–806

    Article  Google Scholar 

  • Liu Y, Gao S, Hu Z, Gao C, Zong K, Wang D (2010a) Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol 51:537–571

    Article  Google Scholar 

  • Liu Y, Hu Z, Zong K, Gao C, Gao S, Xu J, Chen H (2010b) Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin Sci Bull 55:1535–1546

    Article  Google Scholar 

  • Ludwig K (2010) Isoplot/Ex version 4.1, a geochronological toolkit for Microsoft Ex-cel. Berkeley Geochronology Center Special Publication No. 4

  • Meinert LD, Dipple GM, Nicolescu S (2005) World skarn deposits. Econ Geol 100(4):299–336

    Google Scholar 

  • Mezger K, Hanson GN, Bohlen SR (1989) U-Pb systematics of garnet: dating the growth of garnet in the late Archean Pikwitonei granulite domain at Cauchon and Natawahunan Lakes, Manitoba, Canada. Contrib Miner Petrol 101:136–148

    Article  Google Scholar 

  • Miao L, Qiu Y, McNaughton N, Luo Z, Groves D, Zhai Y, Fan W, Zhai M, Guan K (2002) SHRIMP U-Pb zircon geochronology of granitoids from Dongping area, Hebei Province, China: constraints on tectonic evolution and geodynamic setting for gold metallogeny. Ore Geol Rev 19:187–204

    Article  Google Scholar 

  • Park C, Song Y, Kang I-M, Shim J, Chung D, Park C-S (2017) Metasomatic changes during periodic fluid flux recorded in grandite garnet from the Weondong W-skarn deposit, South Korea. Chem Geol 451:135–153

    Article  Google Scholar 

  • Pidgeon RT, Bosch D, Bruguier O (1996) Inherited zircon and titanite U-Pb systems in an Archaean syenite from southwestern Australia: implications for U-Pb stability of titanite. Earth Planet Sci Lett 141:187–198

    Article  Google Scholar 

  • Plümper O, Beinlich A, Bach W, Janots E, Austrheim H (2014) Garnets within geode-like serpentinite veins: implications for element transport, hydrogen production and life-supporting environment formation. Geochim Cosmochim Acta 141:454–471

    Article  Google Scholar 

  • Python M, Ceuleneer G, Ishida Y, Barrat J-A, Arai S (2007) Oman diopsidites: a new lithology diagnostic of very high temperature hydrothermal circulation in mantle peridotite below oceanic spreading centres. Earth Planet Sci Lett 255:289–305

    Article  Google Scholar 

  • Rák Z, Ewing RC, Becker U (2011) Role of iron in the incorporation of uranium in ferric garnet matrices. Phys Rev B 84:155128

    Article  Google Scholar 

  • Rukhlov AS, Bell K (2010) Geochronology of carbonatites from the Canadian and Baltic Shields, and the Canadian Cordillera: clues to mantle evolution. Miner Petrol 98:11–54

    Article  Google Scholar 

  • Scheibner B, Wörner G, Civetta L, Stosch H-G, Simon K, Kronz A (2007) Rare earth element fractionation in magmatic Ca-rich garnets. Contrib Miner Petrol 154:55–74

    Article  Google Scholar 

  • Seman S, Stockli DF, McLean NM (2017) U-Pb geochronology of grossular-andradite garnet. Chem Geol 460:106–116

    Article  Google Scholar 

  • Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767

    Article  Google Scholar 

  • Smith MP, Henderson P, Jeffries TER, Long J, Williams CT (2004) The rare earth elements and uranium in garnets from the Beinn an Dubhaich Aureole, Skye, Scotland, UK: constraints on processes in a dynamic hydrothermal system. J Petrol 45:457–484

    Article  Google Scholar 

  • Smith CB, Haggerty SE, Chatterjee B, Beard A, Townend R (2013) Kimberlite, lamproite, ultramafic lamprophyre, and carbonatite relationships on the Dharwar Craton, India; an example from the Khaderpet pipe, a diamondiferous ultramafic with associated carbonatite intrusion. Lithos 182–183:102–113

    Article  Google Scholar 

  • Soman A, Geisler T, Tomaschek F, Grange M, Berndt J (2010) Alteration of crystalline zircon solid solutions: a case study on zircon from an alkaline pegmatite from Zomba-Malosa, Malawi. Contrib Miner Petrol 160:909–930

    Article  Google Scholar 

  • Tappe S, Jenner GA, Foley SF, Heaman L, Besserer D, Kjarsgaard BA, Ryan B (2004) Torngat ultramafic lamprophyres and their relation to the North Atlantic Alkaline Province. Lithos 76:491–518

    Article  Google Scholar 

  • Vance D, Holland T (1993) A detailed isotopic and petrological study of a single garnet from the Gassetts Schist, Vermont. Contrib Miner Petrol 114:101–118

    Article  Google Scholar 

  • Vance D, Meier M, Oberli F (1998) The influence of high U-Th inclusions on the U-Th-Pb systematics of almandine-pyrope garnet: results of a combined bulk dissolution, stepwise-leaching, and SEM study. Geochim Cosmochim Acta 62:3527–3540

    Article  Google Scholar 

  • Vuorinen JH, Hålenius U, Whitehouse MJ, Mansfeld J, Skelton ADL (2005) Compositional variations (major and trace elements) of clinopyroxene and Ti-andradite from pyroxenite, ijolite and nepheline syenite, Alnö Island, Sweden. Lithos 81:55–77

    Article  Google Scholar 

  • Wiedenbeck M, AllÉ P, Corfu F, Griffin WL, Meier M, Oberli F, Quadt AV, Roddick JC, Spiegel W (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Newsl 19:1–23

    Article  Google Scholar 

  • Xu J, Ciobanu CL, Cook NJ, Zheng Y, Sun X, Wade BP (2016) Skarn formation and trace elements in garnet and associated minerals from Zhibula copper deposit, Gangdese Belt, southern Tibet. Lithos 262:213–231

    Article  Google Scholar 

  • Zhang J-Q, Li S-R, Santosh M, Wang J-Z, Li Q (2015) Mineral chemistry of high-Mg diorites and skarn in the Han-Xing Iron deposits of South Taihang Mountains, China: constraints on mineralization process. Ore Geol Rev 64:200–214

    Article  Google Scholar 

  • Zheng JM (2007) The ore-forming fluid and mineralization of skarn Fe deposits in Handan–Xingtai area, South Hebei [Ph. D Thesis]: China University of Geosciences (Beijing), p 146

Download references

Acknowledgements

We thank Guang Wen, Meijun Yang, and Zhaochu Hu for assistance with the field work, the electron microprobe analyses, and the LA-ICP-MS analyses, respectively. This work was supported by the Ministry of Science and Technology of China (2016YFC0600104), the National Natural Science Foundation of China (41325007, 91514303), and the Research Funds from China University of Geosciences (MSFGPMR03-1, 05; CUG170606). This is contribution 2 from CUG Center for Research in Economic Geology and Exploration Targeting (CREGET). We thank Profs. David Lentz, Paul Robinson, Brent Miller, and Harold Stowell who provided suggestions that have improved the presentation. We also thank the reviewers, Fernando Corfu and an anonymous reviewer, as well as the editor Franck Poitrasson, for their efforts at improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Dong Deng or Jian-Wei Li.

Additional information

Communicated by Franck Poitrasson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

410_2017_1389_MOESM1_ESM.doc

EMS_1 Electron microprobe analyses of garnets from the Dongping syenite intrusion and the Nanminghe and Qicun skarn deposits (DOC 272 kb)

EMS_2 Instrumental setups and operating parameters for the laser ablation system and ICPMS in this study (DOC 34 kb)

EMS_3 Trace element compositions (ppm) of reference glasses determined by LA-ICPMS (DOC 72 kb)

410_2017_1389_MOESM4_ESM.doc

EMS_4 LA-ICPMS trace elements data (ppm) of garnets from the Dongping syenite and the Nanminghe and Qicun skarn deposits (DOC 496 kb)

410_2017_1389_MOESM5_ESM.doc

EMS_5 LA-ICPMS U–Pb isotope data of the garnets and zircons from the Dongping syenite and the Nanminghe and Qicun skarn deposits (DOC 329 kb)

EMS_6 Lead compositions of pyrite and K-feldspar used for 207Pb-correction of garnet U–Pb isotope data (DOC 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, XD., Li, JW., Luo, T. et al. Dating magmatic and hydrothermal processes using andradite-rich garnet U–Pb geochronometry. Contrib Mineral Petrol 172, 71 (2017). https://doi.org/10.1007/s00410-017-1389-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-017-1389-2

Keywords

Navigation