Skip to main content
Log in

The origin of arc basalts: New advances and remaining questions

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Whether arc magmatism occurs above oceanic subduction zones is the forefront of studies on convergent plate margins. The most important petrologic issue related to the evolution of arc systems is the origin of arc magmatism, among which arc basalts are the most important one because they provide insights into mantle enrichment mechanism and crust-mantle interaction at oceanic subduction zones. Fluids or melts released either by dehydration or by melting of subducting oceanic slab infiltrate and metasomatize the overlying mantle wedge at varying depth, leading to the formation of source regions of arc basalts. Such processes make most of arc basalts commonly enriched in large ion lithosphile elements and light rare earth elements, but depleted in high-field strength elements and heavy rare earth elements. Small amounts of arc basalts are characterized by relatively high Nb contents or by Nb enrichment. Rare basalts with compositions similar to ocean island basalts or mid-ocean ridge basalt also occur in arc systems. For these peculiar rocks, it remains debated whether their source is affected by subduction-related components. During their ascent and before their eruption, arc basaltic magmas are subjected to crystal fractionation, mixing and crustal contamination. In addition to the contribution of subducting slab components to the mantle source of arc basalts, the materials above the subducting slab at forearc depths would have been transported either by drag or by subduction erosion into the subarc mantle and into the source of arc magmas. Heats and materials brought by corner flows also play important roles in the generation of arc basalts. Despite the important progresses made in recent studies of arc basalts, further efforts are needed to investigate subarc mantle metasomatism, material recycling, the formation of arc magma sources, geodynamic mechanism in generating arc basalts, and their implicationd s for the initiation of plate tectonics on Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agostini S, Ryan J G, Tonarini S, Innocenti F. 2008. Drying and dying of a subducted slab: Coupled Li and B isotope variations in Western Anatolia Cenozoic volcanism. Earth Planet Sci Lett, 272: 139–147

    Article  Google Scholar 

  • Ague J J, Nicolescu S. 2014. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nat Geosci, 7: 355–360

    Article  Google Scholar 

  • Aguillón-Robles A, Calmus T, Benoit M, Bellon H, Maury R C, Cotten J, Bourgois J, Michaud F. 2001. Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise subduction below Southern Baja California? Geology, 29: 531–534

    Article  Google Scholar 

  • Annen C, Blundy J D, Sparks R S J. 2006. The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol, 47: 505–539

    Article  Google Scholar 

  • Arculus R J. 2003. Use and abuse of the terms calcalkaline and calcalkalic. J Petrol, 44: 929–935

    Article  Google Scholar 

  • Bachmann O, Bergantz G. 2008. The magma reservoirs that feed super-eruptions. Elements, 4: 17–21

    Article  Google Scholar 

  • Bacon C R, Bruggman P E, Christiansen R L, Clynne M A, Donnelly-Nolan J M, Hildreth W. 1997. Primitive magmas at five cascade volcanic fields: Melts from hot, heterogeneous sub-arc mantle. Can Mineral, 35: 397–423

    Google Scholar 

  • Baker M B, Grove T L, Price R. 1994. Primitive basalts and andesites from the Mt. Shasta region, N. California: Products of varying melt fraction and water content. Contrib Mineral Petrol, 118: 111–129

    Article  Google Scholar 

  • Beard J S, Lofgren G E. 1992. An experiment-based model for the petro-genesis of high-alumina basalts. Science, 258: 112–115

    Article  Google Scholar 

  • Beate B, Monzier M, Spikings R, Cotten J, Silva J, Bourdon E, Eissen J P. 2001. Mio-Pliocene adakite generation related to flat subduction in southern Ecuador: The Quimsacocha volcanic center. Earth Planet Sci Lett, 192: 561–570

    Article  Google Scholar 

  • Beaumais A, Bertrand H, Chazot G, Dosso L, Robin C. 2016. Temporal magma source changes at gaua volcano, vanuatu island arc. J Volcanol Geotherm Res, 322: 30–47

    Article  Google Scholar 

  • Beccaluva L, Bianchini G, Mameli P, Natali C. 2013. Miocene shoshonite volcanism in Sardinia: Implications for magma sources and geodynamic evolution of the central-western Mediterranean. Lithos, 180-181: 128–137

    Article  Google Scholar 

  • Beck A R, Morgan Z T, Liang Y, Hess P C. 2006. Dunite channels as viable pathways for mare basalt transport in the deep lunar mantle. Geophys Res Lett, 33: L01202

    Article  Google Scholar 

  • Behn M D, Kelemen P B, Hirth G, Hacker B R, Massonne H J. 2011. Diapirs as the source of the sediment signature in arc lavas. Nat Geosci, 4: 641–646

    Article  Google Scholar 

  • Bénard A, Ionov D A. 2013. Melt- and fluid-rock interaction in supra-subduction lithospheric mantle: Evidence from Andesite-hosted veined peridotite xenoliths. J Petrol, 54: 2339–2378

    Article  Google Scholar 

  • Benton L D, Ryan J G, Savov I P. 2004. Lithium abundance and isotope systematics of forearc serpentinites, Conical Seamount, Mariana fore-arc: Insights into the mechanics of slab-mantle exchange during sub-duction. Geochem Geophys Geosyst, 5: Q08J12

    Article  Google Scholar 

  • Blatter D L, Sisson T W, Hankins W B. 2013. Crystallization of oxidized, moderately hydrous arc basalt at mid- to lower-crustal pressures: Implications for andesite genesis. Contrib Mineral Petrol, 166: 861–886

    Article  Google Scholar 

  • Bloomer S H, Stern R J, Fisk E, Geschwind C H. 1989. Shoshonitic volcanism in the northern Mariana arc: 1. Mineralogic and major and trace element characteristics. J Geophys Res, 94: 4469–4496

    Article  Google Scholar 

  • Blundy J, Cashman K V, Rust A, Witham F. 2010. A case for CO2-rich arc magmas. Earth Planet Sci Lett, 290: 289–301

    Article  Google Scholar 

  • Blundy J, Cashman K, Humphreys M. 2006. Magma heating by decompression-driven crystallization beneath andesite volcanoes. Nature, 443: 76–80

    Article  Google Scholar 

  • Bourdon E, Eissen J P, Gutscher M A, Monzier M, Hall M L, Cotten J. 2003. Magmatic response to early aseismic ridge subduction: The Ecuadorian margin case (South America). Earth Planet Sci Lett, 205: 123–138

    Article  Google Scholar 

  • Bouvier A S, Métrich N, Deloule E. 2008. Slab-derived fluids in magma sources of St. Vincent (Lesser Antilles Arc): Volatile and light element imprints. J Petrol, 49: 1427–1448

    Article  Google Scholar 

  • Bouvier A S, Métrich N, Deloule E. 2010. Light elements, volatiles, and stable isotopes in basaltic melt inclusions from Grenada, Lesser Antilles: Inferences for magma genesis. Geochem Geophys Geosyst, 11: Q09004

    Article  Google Scholar 

  • Branney M, Acocella V. 2015. Calderas. In: Sigurdsson H, Houghton B F, Mcnutt S R, Rymer H, Stix J, Mcbirney A R, eds. The Encyclopedia of Volcanoes. London: Academic Press. 299–315

    Chapter  Google Scholar 

  • Brenan J M, Shaw H F, Ryerson F J, Phinney D L. 1995. Mineral-aqueous fluid partitioning of trace elements at 900°C and 2.0 GPa: Constraints on the trace element chemistry of mantle and deep crustal fluids. Geochim Cosmochim Acta, 59: 3331–3350

    Article  Google Scholar 

  • Brophy J G. 1989. Can high-alumina arc basalt be derived from low-alumina arc basalt? Evidence from Kanaga Island, Aleutian Arc, Alaska. Geology, 17: 333–336

    Article  Google Scholar 

  • Brophy J G, Marsh B D. 1986. On the origin of high-alumina arc basalt and the mechanics of melt extraction. J Petrol, 27: 763–789

    Article  Google Scholar 

  • Caricchi L, Sheldrake T E, Blundy J. 2018. Modulation of magmatic processes by CO2 flushing. Earth Planet Sci Lett, 491: 160–171

    Article  Google Scholar 

  • Carlier G, Lorand J P, Liégeois J P, Fornari M, Soler P, Carlotto V, Cár-denas J. 2005. Potassic-ultrapotassic mafic rocks delineate two litho-spheric mantle blocks beneath the southern Peruvian Altiplano. Geology, 33: 601–604

    Article  Google Scholar 

  • Carlson R W, Grove T L, Donnelly-Nolan J M. 2018. Origin of primitive tholeiitic and calc-alkaline basalts at Newberry Volcano, Oregon. Geochem Geophys Geosyst, 19: 1360–1377

    Article  Google Scholar 

  • Carroll M R, Wyllie P J. 1989. Experimental phase relations in the system tonalite-peridotite-H2O at 15 kb: Implications for assimilation and differentiation processes near the crust-mantle boundary. J Petrol, 30: 1351–1382

    Article  Google Scholar 

  • Cashman K V, Edmonds M. 2019. Mafic glass compositions: A record of magma storage conditions, mixing and ascent. Philos Trans R Soc A-Math Phys Eng Sci, 377: 20180004

    Article  Google Scholar 

  • Cashman K V, Sparks R S J, Blundy J D. 2017. Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science, 355: eaag3055

    Article  Google Scholar 

  • Castillo P R, Solidum R U, Punongbayan R S. 2002. Origin of high field strength element enrichment in the Sulu Arc, southern Philippines, revisited. Geology, 30: 707–710

    Article  Google Scholar 

  • Castillo P R, Rigby S J, Solidum R U. 2007. Origin of high field strength element enrichment in volcanic arcs: Geochemical evidence from the Sulu Arc, southern Philippines. Lithos, 97: 271–288

    Article  Google Scholar 

  • Castro A, Gerya T, Garcia-Casco A, Fernandez C, Diaz-Alvarado J, Moreno-Ventas I, Low I. 2010. Melting Relations of MORB-Sediment Melanges in Underplated Mantle Wedge Plumes; Implications for the Origin of Cordilleran-type Batholiths. J Petrol, 51: 1267–1295

    Article  Google Scholar 

  • Chadwick Jr W W, Cashman K V, Embley R W, Matsumoto H, Dziak R P, de Ronde C E J, Lau T K, Deardorff N D, Merle S G. 2008. Direct video and hydrophone observations of submarine explosive eruptions at NW Rota-1 volcano, Mariana arc. J Geophys Res, 113: B08S10

    Google Scholar 

  • Chan L H, Leeman W P, You C F. 2002. Lithium isotopic composition of Central American Volcanic Arc lavas: Implications for modification of subarc mantle by slab-derived fluids: Correction. Chem Geol, 182: 293–300

    Article  Google Scholar 

  • Codillo E A, Le Roux V, Marschall H R. 2018. Arc-like magmas generated by mélange-peridotite interaction in the mantle wedge. Nat Commun, 9: 2864

    Article  Google Scholar 

  • Cole R B, Stewart B W. 2009. Continental margin volcanism at sites of spreading ridge subduction: Examples from southern Alaska and western California. Tectonophysics, 464: 118–136

    Article  Google Scholar 

  • Collins S J, Pyle D M, Maclennan J. 2009. Melt inclusions track pre-eruption storage and dehydration of magmas at Etna. Geology, 37: 571–574

    Article  Google Scholar 

  • Conticelli S, Marchionni S, Rosa D, Giordano G, Boari E, Avanzinelli R. 2009. Shoshonite and sub-alkaline magmas from an ultrapotassic volcano: Sr-Nd-Pb isotope data on the Roccamonfina volcanic rocks, Roman Magmatic Province, Southern Italy. Contrib Mineral Petrol, 157: 41–63

    Article  Google Scholar 

  • Cooper K M, Kent A J R. 2014. Rapid remobilization of magmatic crystals kept in cold storage. Nature, 506: 480–483

    Article  Google Scholar 

  • Corgne A, Schilling M E, Grégoire M, Langlade J. 2018. Experimental constraints on metasomatism of mantle wedge peridotites by hybridized adakitic melts. Lithos, 308-309: 213–226

    Article  Google Scholar 

  • Crawford A J, Falloon T J, Eggins S. 1987. The origin of island arc high-alumina basalts. Contrib Mineral Petrol, 97: 417–430

    Article  Google Scholar 

  • Cruz-Uribe A M, Marschall H R, Gaetani G A, Le Roux V. 2018. Generation of alkaline magmas in subduction zones by partial melting of mélange diapirs—An experimental study. Geology, 46: 343–346

    Article  Google Scholar 

  • Dasgupta R, Hirschmann M M, Dellas N. 2005. The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa. Contrib Mineral Petrol, 149: 288–305

    Article  Google Scholar 

  • Dasgupta R, Hirschmann M M, Withers A C. 2004. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett, 227: 73–85

    Article  Google Scholar 

  • Dasgupta R. 2013. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev Mineral Geochem, 75: 183–229

    Article  Google Scholar 

  • De Hoog J C, Savov I P. 2017. Boron isotopes as a tracer of subduction zone processes. In: Boron Isotopes. Springer. 217–247

    Google Scholar 

  • DeBari S M, Taylor B, Spencer K, Fujioka K. 1999. A trapped Philippine Sea plate origin for MORB from the inner slope of the Izu-Bonin trench. Earth Planet Sci Lett, 174: 183–197

    Article  Google Scholar 

  • Defant M J, Kepezhinskas P. 2001. Evidence suggests slab melting in arc magmas. Eos Trans AGU, 82: 65–80

    Article  Google Scholar 

  • Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662–665

    Article  Google Scholar 

  • Defant M J, Jackson T E, Drummond M S, de Boer J Z, Bellon H, Fei-genson M D, Maury R C, Stewart R H. 1992. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: An overview. J Geol Soc, 149: 569–579

    Article  Google Scholar 

  • Defant M J, Kepezhinskas P, Defant M J, Xu J F, Kepezhinskas P, Wang Q, Zhang Q, Xiao L. 2002. Adakites: Some variations on a theme. Acta Petrol Sin, 18: 129–142

    Google Scholar 

  • Defant M J, Richerson P M, de Boer J Z, Stewart R H, Maury R C, Bellon H, Drummond M S, Feigenson M D, Jackson T E. 1991. Dacite genesis via both slab melting and differentiation: Petrogenesis of La Yeguada Volcanic Complex, Panama. J Petrol, 32: 1101–1142

    Article  Google Scholar 

  • Draper D S, Johnston A D. 1992. Anhydrous pt phase relations of an aleutian high-mgo basalt: An investigation of the role of olivine-liquid reaction in the generation of arc high-alumina basalts. Contrib Mineral Petrol, 112: 501–519

    Article  Google Scholar 

  • Duncan M S, Dasgupta R. 2014. CO2 solubility and speciation in rhyolitic sediment partial melts at 1.5-3.0 GPa—Implications for carbon flux in subduction zones. Geochim Cosmochim Acta, 124: 328–347

    Article  Google Scholar 

  • Eason D, Sinton J. 2006. Origin of high-Al N-MORB by fractional crystallization in the upper mantle beneath the Galápagos Spreading Center. Earth Planet Sci Lett, 252: 423–436

    Article  Google Scholar 

  • Elburg M, Foden J. 1999. Sources for magmatism in central sulawesi: Geochemical and Sr-Nd-Pb isotopic constraints. Chem Geol, 156: 67–93

    Article  Google Scholar 

  • Elkins-Tanton L T, Grove T L, Donnelly-Nolan J. 2001. Hot, shallow mantle melting under the cascades volcanic arc. Geology, 29: 631–634

    Article  Google Scholar 

  • Elliott T, Plank T, Zindler A, White W, Bourdon B. 1997. Element transport from slab to volcanic front at the mariana arc. J Geophys Res, 102: 14991–15019

    Article  Google Scholar 

  • Ertan I E, Leeman W P. 1996. Metasomatism of Cascades subarc mantle: Evidence from a rare phlogopite orthopyroxenite xenolith. Geology, 24: 451–454

    Article  Google Scholar 

  • Falloon T J, Danyushevsky L V, Crawford T J, Maas R, Woodhead J D, Eggins S M, Bloomer S H, Wright D J, Zlobin S K, Stacey A R. 2007. Multiple mantle plume components involved in the petrogenesis of subduction-related lavas from the northern termination of the Tonga Arc and northern Lau Basin: Evidence from the geochemistry of arc and backarc submarine volcanics. Geochem Geophys Geosyst, 8: Q09003

    Article  Google Scholar 

  • Foden J, Sossi P A, Nebel O. 2018. Controls on the iron isotopic composition of global arc magmas. Earth Planet Sci Lett, 494: 190–201

    Article  Google Scholar 

  • Foley S F, Barth M G, Jenner G A. 2000. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochim Cosmochim Acta, 64: 933–938

    Article  Google Scholar 

  • Freymuth H, Elliott T, van Soest M, Skora S. 2016. Tracing subducted black shales in the Lesser Antilles arc using molybdenum isotope ratios. Geology, 44: 987–990

    Article  Google Scholar 

  • Freymuth H, Vils F, Willbold M, Taylor R N, Elliott T. 2015. Molybdenum mobility and isotopic fractionation during subduction at the Mariana arc. Earth Planet Sci Lett, 432: 176–186

    Article  Google Scholar 

  • Frezzotti M L, Selverstone J, Sharp Z D, Compagnoni R. 2011. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat Geosci, 4: 703–706

    Article  Google Scholar 

  • Frisch W, Meschede M, Blakey R. 2011. Plate Tectonics: Continental Drift and Mountain Building. Berlin Heidelberg: Springer. 212

    Book  Google Scholar 

  • Furnes H, de Wit M, Robins B. 2013. A review of new interpretations of the tectonostratigraphy, geochemistry and evolution of the Onverwacht Suite, Barberton Greenstone Belt, South Africa. Gondwana Res, 23: 403–428

    Article  Google Scholar 

  • Gaetani G A, Grove T L. 1998. The influence of water on melting of mantle peridotite. Contrib Mineral Petrol, 131: 323–346

    Article  Google Scholar 

  • Gaetani G A, Grove T L. 2003. Experimental constraints on melt generation in the mantle wedge. Washington D C: American Geophysical Union Geophysical Monograph Series, 138: 107–134

    Google Scholar 

  • Gaschnig R M, Reinhard C T, Planavsky N J, Wang X, Asael D, Chauvel C. 2017. The molybdenum isotope system as a tracer of slab input in subduction zones: An example from Martinique, Lesser Antilles Arc. Geochem Geophys Geosyst, 18: 4674–4689

    Article  Google Scholar 

  • Gervasoni F, Klemme S, Rohrbach A, Grützner T, Berndt J. 2017. Experimental constraints on mantle metasomatism caused by silicate and carbonate melts. Lithos, 282-283: 173–186

    Article  Google Scholar 

  • Gerya T V, Yuen D A. 2003. Rayleigh-Taylor instabilities from hydration and melting propel “cold plumes” at subduction zones. Earth Planet Sci Lett, 212: 47–62

    Article  Google Scholar 

  • Gill J B. 1981. Orogenic Andesites and Plate Tectonics. New York: Springer-Verlag. 390

    Book  Google Scholar 

  • Gorman P J, Kerrick D M, Connolly J A D. 2006. Modeling open system metamorphic decarbonation of subducting slabs. Geochem Geophys Geosyst, 7: Q04007

    Article  Google Scholar 

  • Gorring M, Singer B, Gowers J, Kay S M. 2003. Plio-Pleistocene basalts from the Meseta del Lago Buenos Aires, Argentina: evidence for asthenosphere-lithosphere interactions during slab window magmatism. Chem Geol, 193: 215–235

    Article  Google Scholar 

  • Green D H. 1973. Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and water-under-saturated conditions. Earth Planet Sci Lett, 19: 37–53

    Article  Google Scholar 

  • Green D, Ringwood A. 1969. The origin of basalt magmas. Washington D C: American Geophysical Union Geophysical Monograph Series, 13: 489–495

    Google Scholar 

  • Green D H, Hibberson W O, Kovács I, Rosenthal A. 2010. Water and its influence on the lithosphere-asthenosphere boundary. Nature, 467: 448–451

    Article  Google Scholar 

  • Green D H, Hibberson W O, Rosenthal A, Kovács I, Yaxley G M, Falloon T J, Brink F. 2014. Experimental study of the influence of water on melting and phase assemblages in the upper mantle. J Petrol, 55: 2067–2096

    Article  Google Scholar 

  • Green D H, Rosenthal A, Kovács I. 2012. Comment on “The beginnings of hydrous mantle wedge melting”, CB Till, TL Grove, AC Withers, Contributions to Mineralogy and Petrology, DOI 10.1007/s00410-011-0692-6. Contrib Mineral Petrol, 164: 1077–1081

    Article  Google Scholar 

  • Grove T L, Parman S W, Bowring S A, Price R C, Baker M B. 2002. The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib Mineral Petrol, 142: 375–396

    Article  Google Scholar 

  • Grove T L, Till C B, Krawczynski M J. 2012. The role of H2 O in sub-duction zone magmatism. Annu Rev Earth Planet Sci, 40: 413–439

    Article  Google Scholar 

  • Grove T L, Till C B, Lev E, Chatterjee N, Médard E. 2009. Kinematic variables and water transport control the formation and location of arc volcanoes. Nature, 459: 694–697

    Article  Google Scholar 

  • Grove T, Chatterjee N, Parman S, Médard E. 2006. The influence of H2O on mantle wedge melting. Earth Planet Sci Lett, 249: 74–89

    Article  Google Scholar 

  • Gust D A, Perfit M R. 1987. Phase relations of a high-mg basalt from the aleutian island arc: Implications for primary island arc basalts and high-al basalts. Contrib Mineral Petrol, 97: 7–18

    Article  Google Scholar 

  • Hall P S, Kincaid C. 2001. Diapiric flow at subduction zones: A recipe for rapid transport. Science, 292: 2472–2475

    Article  Google Scholar 

  • Hamilton W. 1964. Origin of high-alumina basalt, andesite, and dacite magmas. Science, 146: 635–637

    Article  Google Scholar 

  • Hanyu T, Tatsumi Y, Nakai S. 2002. A contribution of slab-melts to the formation of high-Mg andesite magmas Hf isotopic evidence from Sw Japan. Geophys Res Lett, 29: 2051

    Article  Google Scholar 

  • Hastie A R, Fitton J G, Mitchell S F, Neill I, Nowell G M, Millar I L. 2015. Can fractional crystallization, mixing and assimilation processes be responsible for Jamaican-type Adakites? Implications for generating Eoarchaean continental crust. J Petrol, 56: 1251–1284

    Article  Google Scholar 

  • Hawkesworth C J, Gallagher K, Hergt J M, McDermott F. 1993. Mantle and slab contributions in arc magmas. Annu Rev Earth Planet Sci, 21: 175–204

    Article  Google Scholar 

  • Hermann J, Spandler C J. 2008. Sediment melts at sub-arc depths: An experimental study. J Petrol, 49: 717–740

    Article  Google Scholar 

  • Hickey-Vargas R, Sun M, Holbik S. 2016. Geochemistry of basalts from small eruptive centers near Villarrica stratovolcano, Chile: Evidence for lithospheric mantle components in continental arc magmas. Geochim Cosmochim Acta, 185: 358–382

    Article  Google Scholar 

  • Hirschmann M M, Kogiso T, Baker M B, Stolper E M. 2003. Alkalic magmas generated by partial melting of garnet pyroxenite. Geology, 31: 481–484

    Article  Google Scholar 

  • Hochstaedter A G, Gill J B, Taylor B, Ishizuka O, Yuasa M, Monta S. 2000. Across-arc geochemical trends in the Izu-Bonin arc: Constraints on source composition and mantle melting. J Geophys Res, 105: 495–512

    Article  Google Scholar 

  • Hoernle K, Abt D L, Fischer K M, Nichols H, Hauff F, Abers G A, van den Bogaard P, Heydolph K, Alvarado G, Protti M, Strauch W. 2008. Arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. Nature, 451: 1094–1097

    Article  Google Scholar 

  • Husen A, Almeev R R, Holtz F. 2016. The effect of H2O and pressure on multiple saturation and liquid lines of descent in basalt from the Shatsky Rise. J Petrol, 57: 309–344

    Article  Google Scholar 

  • Irving A J, Green D H. 2008. Phase relationships of hydrous alkalic magmas at high pressures: Production of nepheline hawaiitic to mu-gearitic liquids by amphibole-dominated fractional crystallization within the lithospheric mantle. J Petrol, 49: 741–756

    Article  Google Scholar 

  • Ishikawa T, Nakamura E. 1994. Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes. Nature, 370: 205–208

    Article  Google Scholar 

  • Ishizuka O, Kimura J, Li Y, Stern R, Reagan M, Taylor R, Ohara Y, Bloomer S, Ishii T, Hargroveiii U. 2006. Early stages in the evolution of Izu-Bonin arc volcanism: New age, chemical, and isotopic constraints. Earth Planet Sci Lett, 250: 385–401

    Article  Google Scholar 

  • Ishizuka O, Tani K, Reagan M K, Kanayama K, Umino S, Harigane Y, Sakamoto I, Miyajima Y, Yuasa M, Dunkley D J. 2011. The timescales of subduction initiation and subsequent evolution of an oceanic island arc. Earth Planet Sci Lett, 306: 229–240

    Article  Google Scholar 

  • Ishizuka O, Uto K, Yuasa M, Hochstaedter A G. 2003. Volcanism in the earliest stage of back-arc rifting in the izu-bonin arc revealed by laserheating 40Ar/39Ar dating. J Volcanol Geotherm Res, 120: 71–85

    Article  Google Scholar 

  • Ishizuka O, Yuasa M, Taylor R N, Sakamoto I. 2009. Two contrasting magmatic types coexist after the cessation of back-arc spreading. Chem Geol, 266: 274–296

    Article  Google Scholar 

  • Johnston A D, Wyllie P J. 1989. The system tonalite-peridotite-H2O at 30 kbar, with applications to hybridization in subduction zone magmatism. Contrib Mineral Petrol, 102: 257–264

    Article  Google Scholar 

  • Kawamoto T, Kanzaki M, Mibe K, Matsukage K N, Ono S. 2012. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism. Proc Natl Acad Sci USA, 109: 18695–18700

    Article  Google Scholar 

  • Kay S M, Godoy E, Kurtz A. 2005. Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central andes. Geol Soc Am Bull, 117: 67–88

    Article  Google Scholar 

  • Kelemen P B, Rilling J L, Parmentier E M, Mehl L, Hacker B R. 2003. Thermal structure due to solid-state flow in the mantle wedge beneath arcs. In: Eiler J, ed. Inside the Subduction Factory. Washington D C: AGU. 293–311

    Chapter  Google Scholar 

  • Kelemen P B, Hanghøj K, Greene A R. 2014. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Turekian K K, ed. Treatise on Geochemistry (Second Edition). Oxford: Elsevier. 749–806

    Chapter  Google Scholar 

  • Kepezhinskas P, Defant M J. 1996. Contrasting styles of mantle metasomatism above subduction zones: Constraints from ultrama¢c xenoliths in Kamchatka. In: Bebout G E, Scholl D W, Kirby S H, Platt J P, eds. Subduction: Top to Bottom. Washington D C: AGU. 307–314

    Google Scholar 

  • Kepezhinskas P K, Defant M J, Drummond M S. 1995. Na metasomatism in the island arc mantle by slab melt-peridotite interaction: Evidence from mantle xenoliths in the North Kamchatka arc. J Petrol, 36: 1505–1527

    Google Scholar 

  • Kepezhinskas P, McDermott F, Defant M J, Hochstaedter A, Drummond M S, Hawkesworth C J, Koloskov A, Maury R C, Bellon H. 1997. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochim Cosmochim Acta, 61: 577–600

    Article  Google Scholar 

  • Keppler H. 1996. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 380: 237–240

    Article  Google Scholar 

  • Kessel R, Schmidt M W, Ulmer P, Pettke T. 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120-180 km depth. Nature, 437: 724–727

    Article  Google Scholar 

  • Kikuchi Y. 1888. Geological summary of the Bonin and Volcano Islands (in Japanese). Toyo Gakugei-zasshi, 5: 64–69

    Google Scholar 

  • Kikuchi Y. 1890. On pyorxene components in certain volcanic rocks from Bonin Island. J Coll Sci Imp Univ Japan, 3: 67–89

    Google Scholar 

  • Kimura J I, Ariskin A A. 2014. Calculation of water-bearing primary basalt and estimation of source mantle conditions beneath arcs: Primacalc2 model for windows. Geochem Geophys Geosyst, 15: 1494–1514

    Article  Google Scholar 

  • Kincaid C, Druken K A, Griffiths R W, Stegman D R. 2013. Bifurcation of the Yellowstone plume driven by subduction-induced mantle flow. Nat Geosci, 6: 395–399

    Article  Google Scholar 

  • Kincaid C, Griffiths R W. 2003. Laboratory models of the thermal evolution of the mantle during rollback subduction. Nature, 425: 58–62

    Article  Google Scholar 

  • Kirby S, Engdahl E, Denlinger R. 1996. Intermediate-depth intraplate earthquakes and arc volcanism as physical expressions of crustal and upper mantle meta-morphism in subducting slabs. In: Bebout G E, Scholl D W, Kirby S H, Platt J P, eds. Subduction Top to Bottom. Washington D C: AGU. 195–214

    Google Scholar 

  • Klein E M, Langmuir C H. 1987. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J Geophys Res, 92: 8089–8115

    Article  Google Scholar 

  • König S, Wille M, Voegelin A, Schoenberg R. 2016. Molybdenum isotope systematics in subduction zones. Earth Planet Sci Lett, 447: 95–102

    Article  Google Scholar 

  • Konrad-Schmolke M, Halama R, Manea V C. 2016. Slab mantle dehydrates beneath Kamchatka-yet recycles water into the deep mantle. Geochem Geophys Geosyst, 17: 2987–3007

    Article  Google Scholar 

  • Korenaga J, Kelemen P B. 2000. Major element heterogeneity in the mantle source of the North Atlantic igneous province. Earth Planet Sci Lett, 184: 251–268

    Article  Google Scholar 

  • Kuno H. 1960. High-alumina basalt. J Petrol, 1: 121–145

    Article  Google Scholar 

  • Kuritani T, Yokoyama T, Nakamura E. 2008. Generation of rear-arc magma induced by influx of slab-derived supercritical liquids: Implications from alkali basalt lavas from Rishiri Volcano, Kurile arc. J Petrol, 49: 1319–1342

    Article  Google Scholar 

  • Kushiro I. 1959. Preliminary note on alkali-dolerite of atumi district, northern Japan. Jap J Geol Geogr, 30: 259–272

    Google Scholar 

  • Kushiro I. 1968. Compositions of magmas formed by partial zone melting of the Earth’s upper mantle. J Geophys Res, 73: 619–634

    Article  Google Scholar 

  • Lai Y M, Song S R, Lo C H, Lin T H, Chu M F, Chung S L. 2017. Age, geochemical and isotopic variations in volcanic rocks from the Coastal Range of Taiwan: Implications for magma generation in the Northern Luzon Arc. Lithos, 272-273: 92–115

    Article  Google Scholar 

  • Lambart S, Laporte D, Provost A, Schiano P. 2012. Fate of pyroxenite-derived melts in the peridotitic mantle: Thermodynamic and experimental constraints. J Petrol, 53: 451–476

    Article  Google Scholar 

  • Lambart S, Laporte D, Schiano P. 2009. An experimental study of pyr-oxenite partial melts at 1 and 1.5 GPa: Implications for the major-element composition of Mid-Ocean ridge basalts. Earth Planet Sci Lett, 288: 335–347

    Article  Google Scholar 

  • Le Voyer M, Rose-Koga E F, Shimizu N, Grove T L, Schiano P. 2010. Two contrasting H2O-rich components in primary melt inclusions from mount shasta. J Petrol, 51: 1571–1595

    Article  Google Scholar 

  • Leeman W P, Lewis J F, Evarts R C, Conrey R M, Streck M J. 2005. Petrologic constraints on the thermal structure of the Cascades arc. J Volcanol Geotherm Res, 140: 67–105

    Article  Google Scholar 

  • Leslie R A J, Danyushevsky L V, Crawford A J, Verbeeten A C. 2009. Primitive shoshonites from Fiji: Geochemistry and source components. Geochem Geophys Geosyst, 10: Q07001

    Article  Google Scholar 

  • Li H Y, Taylor R N, Prytulak J, Kirchenbaur M, Shervais J W, Ryan J G, Godard M, Reagan M K, Pearce J A. 2019. Radiogenic isotopes document the start of subduction in the Western Pacific. Earth Planet Sci Lett, 518: 197–210

    Article  Google Scholar 

  • Lin P N, Stern R J, Bloomer S H. 1989. Shoshonitic volcanism in the northern Mariana arc: 2. Large-ion lithophile and rare earth element abundances: Evidence for the source of incompatible element enrichments in intraoceanic arcs. J Geophys Res, 94: 4497–4514

    Article  Google Scholar 

  • Liu L, Stegman D R. 2012. Origin of Columbia River flood basalt controlled by propagating rupture of the Farallon slab. Nature, 482: 386–389

    Article  Google Scholar 

  • Lynn K J, Shea T, Garcia M O, Costa F, Norman M D. 2018. Lithium diffusion in olivine records magmatic priming of explosive basaltic eruptions. Earth Planet Sci Lett, 500: 127–135

    Article  Google Scholar 

  • Mallik A, Dasgupta R, Tsuno K, Nelson J. 2016. Effects of water, depth and temperature on partial melting of mantle-wedge fluxed by hydrous sediment-melt in subduction zones. Geochim Cosmochim Acta, 195: 226–243

    Article  Google Scholar 

  • Mallik A, Dasgupta R. 2012. Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts. Earth Planet Sci Lett, 329-330: 97–108

    Article  Google Scholar 

  • Mallik A, Nelson J, Dasgupta R. 2015. Partial melting of fertile peridotite fluxed by hydrous rhyolitic melt at 2-3 GPa: Implications for mantle wedge hybridization by sediment melt and generation of ultrapotassic magmas in convergent margins. Contrib Mineral Petrol, 169: 48

    Article  Google Scholar 

  • Manning C E. 2004. The chemistry of subduction-zone fluids. Earth Planet Sci Lett, 223: 1–16

    Article  Google Scholar 

  • Marschall H R, Schumacher J C. 2012. Arc magmas sourced from mélange diapirs in subduction zones. Nat Geosci, 5: 862–867

    Article  Google Scholar 

  • Martin C, Flores K E, Harlow G E. 2016. Boron isotopic discrimination for subduction-related serpentinites. Geology, 44: 899–902

    Article  Google Scholar 

  • Martin H, Moyen J F, Guitreau M, Blichert-Toft J, Le Pennec J L. 2014. Why Archaean TTG cannot be generated by MORB melting in sub-duction zones. Lithos, 198-199: 1–13

    Article  Google Scholar 

  • Martin H, Smithies R H, Rapp R, Moyen J F, Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sa-nukitoid: Relationships and some implications for crustal evolution. Lithos, 79: 1–24

    Article  Google Scholar 

  • McGary R S, Evans R L, Wannamaker P E, Elsenbeck J, Rondenay S. 2014. Pathway from subducting slab to surface for melt and fluids beneath Mount Rainier. Nature, 511: 338–340

    Article  Google Scholar 

  • McInnes B I A, Gregoire M, Binns R A, Herzig P M, Hannington M D. 2001. Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea: Petrology and geochemistry of fluid-metasomatised mantle wedge xenoliths. Earth Planet Sci Lett, 188: 169–183

    Article  Google Scholar 

  • Médard E, Schmidt M W, Schiano P, Ottolini L. 2006. Melting of am-phibole-bearing wehrlites: An experimental study on the origin of ultra-calcic nepheline-normative melts. J Petrol, 47: 481–504

    Article  Google Scholar 

  • Meffre S, Falloon T J, Crawford T J, Hoernle K, Hauff F, Duncan R A, Bloomer S H, Wright D J. 2012. Basalts erupted along the tongan fore arc during subduction initiation: Evidence from geochronology of dredged rocks from the tonga fore arc and trench. Geochem Geophys Geosyst, 13: Q12003

    Article  Google Scholar 

  • Melekhova E, Blundy J, Robertson R, Humphreys M C S. 2015. Experimental evidence for polybaric differentiation of primitive arc basalt beneath St. Vincent, Lesser Antilles. J Petrol, 56: 161–192

    Article  Google Scholar 

  • Mibe K, Kawamoto T, Matsukage K N, Fei Y, Ono S. 2011. Slab melting versus slab dehydration in subduction-zone magmatism. Proc Natl Acad Sci USA, 108: 8177–8182

    Article  Google Scholar 

  • Morgan Z, Liang Y. 2003. An experimental and numerical study of the kinetics of harzburgite reactive dissolution with applications to dunite dike formation. Earth Planet Sci Lett, 214: 59–74

    Article  Google Scholar 

  • Moriguti T, Nakamura E. 1998. Across-arc variation of Li isotopes in lavas and implications for crust/mantle recycling at subduction zones. Earth Planet Sci Lett, 163: 167–174

    Article  Google Scholar 

  • Morrison G W. 1980. Characteristics and tectonic setting of the shoshonite rock association. Lithos, 13: 97–108

    Article  Google Scholar 

  • Mullen E K, Weis D, Marsh N B, Martindale M. 2017. Primitive arc magma diversity: New geochemical insights in the cascade arc. Chem Geol, 448: 43–70

    Article  Google Scholar 

  • Mullen E K, Weis D. 2013. Sr-Nd-Hf-Pb isotope and trace element evidence for the origin of alkalic basalts in the Garibaldi Belt, northern Cascade arc. Geochem Geophys Geosyst, 14: 3126–3155

    Article  Google Scholar 

  • Müller D, Franz L, Herzig P M, Hunt S. 2001. Potassic igneous rocks from the vicinity of epithermal gold mineralization, Lihir Island, Papua New Guinea. Lithos, 57: 163–186

    Article  Google Scholar 

  • Müller D, Rock N M S, Groves D I. 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: A pilot study. Mineral Petrol, 46: 259–289

    Article  Google Scholar 

  • Nakajima J, Hasegawa A. 2007. Subduction of the philippine sea plate beneath southwestern japan: Slab geometry and its relationship to arc magmatism. J Geophys Res, 112: B08306

    Google Scholar 

  • Ni H, Zhang L, Xiong X, Mao Z, Wang J. 2017. Supercritical fluids at subduction zones: Evidence, formation condition, and physicochemical properties. Earth-Sci Rev, 167: 62–71

    Article  Google Scholar 

  • Nicholls I A, Ringwood A E. 1973. Production of silica-saturated tholeiitic magmas in island arcs. Earth Planet Sci Lett, 17: 243–246

    Article  Google Scholar 

  • Nielsen S G, Marschall H R. 2017. Geochemical evidence for mélange melting in global arcs. Sci Adv, 3: e1602402

    Article  Google Scholar 

  • Niu Y. 2005. Generation and evolution of basaltic magmas: Some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China. Geol J China Univ, 11: 9–46

    Google Scholar 

  • Pabst S, Zack T, Savov I P, Ludwig T, Rost D, Vicenzi E P. 2011. Evidence for boron incorporation into the serpentine crystal structure. Am Miner, 96: 1112–1119

    Article  Google Scholar 

  • Parman S W, Grove T L, Kelley K A, Plank T. 2011. Along-arc variations in the pre-eruptive H2O contents of Mariana Arc magmas inferred from fractionation paths. J Petrol, 52: 257–278

    Article  Google Scholar 

  • Peacock S M, Rushmer T, Thompson A B. 1994. Partial melting of subducting oceanic crust. Earth Planet Sci Lett, 121: 227–244

    Article  Google Scholar 

  • Peate D W, Pearce J A, Hawkesworth C J, Colley H, Edwards C M H, Hirose K. 1997. Geochemical variations in vanuatu arc lavas: The role of subducted material and a variable mantle wedge composition. J Petrol, 38: 1331–1358

    Article  Google Scholar 

  • Pertermann M, Hirschmann M M. 2003. Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: Constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J Geophys Res, 108: 2125

    Google Scholar 

  • Pichavant M, MacDonald R. 2007. Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: Experimental evidence from St Vincent, Lesser Antilles arc. Contrib Mineral Petrol, 154: 535–558

    Article  Google Scholar 

  • Pilet S, Baker M B, Stolper E M. 2008. Metasomatized lithosphere and the origin of alkaline lavas. Science, 320: 916–919

    Article  Google Scholar 

  • Pirard C, Hermann J. 2015. Focused fluid transfer through the mantle above subduction zones. Geology, 43: 915–918

    Article  Google Scholar 

  • Plank T, Kelley K A, Zimmer M M, Hauri E H, Wallace P J. 2013. Why do mafic arc magmas contain ~4 wt% water on average? Earth Planet Sci Lett, 364: 168–179

    Article  Google Scholar 

  • Plank T, Langmuir C H. 1988. An evaluation of the global variations in the major element chemistry of arc basalts. Earth Planet Sci Lett, 90: 349–370

    Article  Google Scholar 

  • Polat A, Kerrich R. 2002. Nd-isotope systematics of ~2.7 Ga adakites, magnesian andesites, and arc basalts, Superior Province: Evidence for shallow crustal recycling at Archean subduction zones. Earth Planet Sci Lett, 202: 345–360

    Article  Google Scholar 

  • Price A A, Jackson M G, Blichert-Toft J, Hall P S, Sinton J M, Kurz M D, Blusztajn J. 2014. Evidence for a broadly distributed Samoan-plume signature in the northern Lau and North Fiji Basins. Geochem Geophys Geosyst, 15: 986–1008

    Article  Google Scholar 

  • Prigent C, Guillot S, Agard P, Lemarchand D, Soret M, Ulrich M. 2018. Transfer of subduction fluids into the deforming mantle wedge during nascent subduction: Evidence from trace elements and boron isotopes (Semail ophiolite, Oman). Earth Planet Sci Lett, 484: 213–228

    Article  Google Scholar 

  • Rapp R P, Shimizu N, Norman M D, Applegate G S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chem Geol, 160: 335–356

    Article  Google Scholar 

  • Rapp R P, Watson E B. 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. J Petrol, 36: 891–931

    Article  Google Scholar 

  • Reagan M K, Ishizuka O, Stern R J, Kelley K A, Ohara Y, Blichert-Toft J, Bloomer S H, Cash J, Fryer P, Hanan B B, Hickey-Vargas R, Ishii T, Kimura J I, Peate D W, Rowe M C, Woods M. 2010. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system. Geochem Geophys Geosyst, 11: Q03X12

    Article  Google Scholar 

  • Ringwood A E. 1990. Slab-mantle interactions. Chem Geol, 82: 187–207

    Article  Google Scholar 

  • Ringwood A E. 1974. The petrological evolution of island arc systems. J Geol Soc, 130: 183–204

    Article  Google Scholar 

  • Roeder P L, Emslie R F. 1970. Olivine-liquid equilibrium. Contrib Mineral Petrol, 29: 275–289

    Article  Google Scholar 

  • Rogers N. 2015. The composition and origin of magmas. In: Sigurdsson H, Houghton B F, Mcnutt S R, Rymer H, Stix J, Mcbirney A R, eds. The Encyclopedia of Volcanoes. London: Academic Press. 93–112

    Chapter  Google Scholar 

  • Ruprecht P, Plank T. 2013. Feeding andesitic eruptions with a high-speed connection from the mantle. Nature, 500: 68–72

    Article  Google Scholar 

  • Ruth D C S, Costa F, Bouvet de Maisonneuve C, Franco L, Cortés J A, Calder E S. 2018. Crystal and melt inclusion timescales reveal the evolution of magma migration before eruption. Nat Commun, 9: 2657

    Article  Google Scholar 

  • Sajona F G, Bellon H, Maury R C, Pubellier M, Cotten J, Rangin C. 1994. Magmatic response to abrupt changes in geodynamic settings: Pliocene —Quaternary calc-alkaline and Nb-enriched lavas from Mindanao (Philippines). Tectonophysics, 237: 47–72

    Article  Google Scholar 

  • Sajona F G, Maury R C, Bellon H, Cotten J, Defant M. 1996. High field strength element enrichment of Pliocene-Pleistocene Island arc basalts, Zamboanga Peninsula, western Mindanao (Philippines). J Petrol, 37: 693–726

    Article  Google Scholar 

  • Sajona F G, Maury R C, Bellon H, Cotten J, Defant M J, Pubellier M. 1993. Initiation of subduction and the generation of slab melts in Western and Eastern Mindanao, Philippines. Geology, 21: 1007–1010

    Article  Google Scholar 

  • Sano Y, Williams S N. 1996. Fluxes of mantle and subducted carbon along convergent plate boundaries. Geophys Res Lett, 23: 2749–2752

    Article  Google Scholar 

  • Saper L, Liang Y. 2014. Formation of plagioclase-bearing peridotite and plagioclase-bearing wehrlite and gabbro suite through reactive crystallization: An experimental study. Contrib Mineral Petrol, 167: 985

    Article  Google Scholar 

  • Savov I P, Ryan J G, D’Antonio M, Fryer P. 2007. Shallow slab fluid release across and along the Mariana arc-basin system: Insights from geochemistry of serpentinized peridotites from the Mariana fore arc. J Geophys Res, 112: B09205

    Google Scholar 

  • Savov I P, Ryan J G, D’Antonio M, Kelley K, Mattie P. 2005. Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: Implications for the elemental recycling at subduction zones. Geochem Geophys Geosyst, 6: Q04J15

    Article  Google Scholar 

  • Scambelluri M, Tonarini S. 2012. Boron isotope evidence for shallow fluid transfer across subduction zones by serpentinized mantle. Geology, 40: 907–910

    Article  Google Scholar 

  • Scherbarth N L, Spry P G. 2006. Mineralogical, petrological, stable isotope, and fluid inclusion characteristics of the tuvatu gold-silver tell-uride deposit, Fiji: Comparisons with the emperor deposit. Econ Geol, 101: 135–158

    Article  Google Scholar 

  • Schmidt M W. 1996. Experimental constraints on recycling of potassium from subducted oceanic crust. Science, 272: 1927–1930

    Article  Google Scholar 

  • Schmidt M W. 2015. Melting of pelitic sediments at subarc depths: 2. Melt chemistry, viscosities and a parameterization of melt composition. Chem Geol, 404: 168–182

    Article  Google Scholar 

  • Schmidt M W, Jagoutz O. 2017. The global systematics of primitive arc melts. Geochem Geophys Geosyst, 18: 2817–2854

    Article  Google Scholar 

  • Schmidt M W, Poli S. 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett, 163: 361–379

    Article  Google Scholar 

  • Schmidt M W, Poli S. 2014. 4.19. Devolatilization during subduction. In: Turekian K K, ed. Treatise on Geochemistry (Second Edition). Oxford: Elsevier. 669–697

    Google Scholar 

  • Scholl D W, Plank T, Morris J, von Huene R, Mottl M J. 1994. Science opportunities in Ocean Drilling to investigate recycling processes and material fluxes at subduction zones. Avalon: Proceedings of a JOI/ USSAC workshop

    Google Scholar 

  • Schuth S, Münker C, König S, Qopoto C, Basi S, Garbe-Schönberg D, Ballhaus C. 2009. Petrogenesis of lavas along the solomon island arc, sw pacific: Coupling of compositional variations and subduction zone geometry. J Petrol, 50: 781–811

    Article  Google Scholar 

  • Shervais J W, Reagan M, Haugen E, Almeev R R, Pearce J A, Prytulak J, Ryan J G, Whattam S A, Godard M, Chapman T, Li H, Kurz W, Nelson W R, Heaton D, Kirchenbaur M, Shimizu K, Sakuyama T, Li Y, Vetter S K. 2019. Magmatic response to subduction initiation: Part 1. Fore-arc basalts of the Izu-Bonin Arc From IODP expedition 352. Geochem Geophys Geosyst, 20: 314–338

    Article  Google Scholar 

  • Shirey S B, Hanson G N. 1984. Mantle-derived Archaean monozodiorites and trachyandesites. Nature, 310: 222–224

    Article  Google Scholar 

  • Shuto K, Nohara-Imanaka R, Sato M, Takahashi T, Takazawa E, Kawabata H, Takanashi K, Ban M, Watanabe N, Fujibayashi N. 2015. Across-arc variations in geochemistry of oligocene to quaternary basalts from the ne japan arc: Constraints on source composition, mantle melting and slab input composition. J Petrol, 56: 2257–2297

    Article  Google Scholar 

  • Sisson T W, Grove T L. 1993. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol, 113: 143–166

    Article  Google Scholar 

  • Sisson T W, Kelemen P B. 2018. Near-solidus melts of MORB +4 wt% H2O at 0.8-2.8 GPa applied to issues of subduction magmatism and continent formation. Contrib Mineral Petrol, 173: 70

    Article  Google Scholar 

  • Sisson T W, Layne G D. 1993. H2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes. Earth Planet Sci Lett, 117: 619–635

    Article  Google Scholar 

  • Smithies R H, Champion D C, Sun S S. 2004. Evidence for Early LREE-enriched mantle source regions: Diverse magmas from the c. 3.0 Ga Mallina Basin, Pilbara Craton, NW Australia. J Petrol, 45: 1515–1537

    Article  Google Scholar 

  • Smithies R H, Champion D C, Cassidy K F. 2003. Formation of Earth’s early Archaean continental crust. Precambrian Res, 127: 89–101

    Article  Google Scholar 

  • Sorbadere F, Médard E, Laporte D, Schiano P. 2013a. Experimental melting of hydrous peridotite-pyroxenite mixed sources: Constraints on the genesis of silica-undersaturated magmas beneath volcanic arcs. Earth Planet Sci Lett, 384: 42–56

    Article  Google Scholar 

  • Sorbadere F, Schiano P, Métrich N, Bertagnini A. 2013b. Small-scale coexistence of island-arc- and enriched-MORB-type basalts in the central Vanuatu arc. Contrib Mineral Petrol, 166: 1305–1321

    Article  Google Scholar 

  • Spandler C, Pirard C. 2013. Element recycling from subducting slabs to arc crust: A review. Lithos, 170-171: 208–223

    Article  Google Scholar 

  • Spandler C, Yaxley G, Green D H, Scott D. 2010. Experimental phase and melting relations of metapelite in the upper mantle: Implications for the petrogenesis of intraplate magmas. Contrib Mineral Petrol, 160: 569–589

    Article  Google Scholar 

  • Stalder R, Foley S F, Brey G P, Horn I. 1998. Mineral-aqueous fluid partitioning of trace elements at 900-1200°C and 3.0-5.7 GPa: New experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochim Cosmochim Acta, 62: 1781–1801

    Article  Google Scholar 

  • Stern R J. 2010. The anatomy and ontogeny of modern intra-oceanic arc systems. Geol Soc Lond Spec Publ, 338: 7–34

    Article  Google Scholar 

  • Straub S M, Gómez-Tuena A, Bindeman I N, Bolge L L, Brandl P A, Espinasa-Perena R, Solari L, Stuart F M, Vannucchi P, Zellmer G F. 2015. Crustal recycling by subduction erosion in the central mexican volcanic belt. Geochim Cosmochim Acta, 166: 29–52

    Article  Google Scholar 

  • Su B X, Zhou M F, Robinson P T. 2016. Extremely large fractionation of Li isotopes in a chromitite-bearing mantle sequence. Sci Rep, 6: 22370

    Article  Google Scholar 

  • Su B, Chen Y, Guo S, Chen S, Li Y. 2019. Garnetite and pyroxenite in the mantle wedge formed by slab-mantle interactions at different melt/rock ratios. J Geophys Res Solid Earth, 124: 6504–6522

    Article  Google Scholar 

  • Sun S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol Soc Lond Spec Publ, 42: 313–345

    Article  Google Scholar 

  • Syracuse E M, van Keken P E, Abers G A, Suetsugu D, Bina C, Inoue T, Wiens D, Jellinek M. 2010. The global range of subduction zone thermal models. Phys Earth Planet Inter, 183: 73–90

    Article  Google Scholar 

  • Tamura A, Arai S. 2006. Harzburgite-dunite-orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle. Lithos, 90: 43–56

    Article  Google Scholar 

  • Tang G J, Wang Q, Wyman D, Sun M, Li Z X, Zhao Z H, Sun W D, Jia X H, Jiang Z Q. 2010. Geochronology and geochemistry of Late Paleozoic magmatic rocks in the Lamasu-Dabate area, northwestern Tianshan (west China): Evidence for a tectonic transition from arc to post-colli-sional setting. Lithos, 119: 3–4

    Article  Google Scholar 

  • Tang M, Rudnick R L, Chauvel C. 2014. Sedimentary input to the source of Lesser Antilles lavas: A Li perspective. Geochim Cosmochim Acta, 144: 43–58

    Article  Google Scholar 

  • Tatsumi Y, Hamilton D L, Nesbitt R W. 1986. Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: Evidence from high-pressure experiments and natural rocks. J Volcanol Geotherm Res, 29: 293–309

    Article  Google Scholar 

  • Tatsumi Y, Kogiso T. 2003. The subduction factory: Its role in the evolution of the earth’s crust and mantle. Geol Soc Lond Spec Publ, 219: 55–80

    Article  Google Scholar 

  • Tatsumi Y, Sakuyama M, Fukuyama H, Kushiro I. 1983. Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones. J Geophys Res, 88: 5815–5825

    Article  Google Scholar 

  • Tatsumi Y, Takahashi T, Hirahara Y, Chang Q, Miyazaki T, Kimura J I, Ban M, Sakayori A. 2008. New insights into andesite genesis: The role of mantle-derived calc-alkalic and crust-derived tholeiitic melts in magma differentiation beneath zao volcano, NE Japan. J Petrol, 49: 1971–2008

    Article  Google Scholar 

  • Tatsumi Y. 1989. Migration of fluid phases and genesis of basalt magmas in subduction zones. J Geophys Res, 94: 4697–4707

    Article  Google Scholar 

  • Tatsumi Y. 2005. The subduction factory: How it operates in the evolving earth. GSA Today, 15: 4–10

    Article  Google Scholar 

  • Tatsumi Y. 2006. High-mg andesites in the setouchi volcanic belt, southwestern japan: Analogy to archean magmatism and continental crust formation? Annu Rev Earth Planet Sci, 34: 467–499

    Article  Google Scholar 

  • Teng F Z, Hu Y, Chauvel C. 2016. Magnesium isotope geochemistry in arc volcanism. Proc Natl Acad Sci USA, 113: 7082–7087

    Article  Google Scholar 

  • Tenner T J, Hirschmann M M, Humayun M. 2012. The effect of H2O on partial melting of garnet peridotite at 3.5 GPa. Geochem Geophys Geosyst, 13: Q03016

    Article  Google Scholar 

  • Thomsen T B, Schmidt M W. 2008. Melting of carbonated pelites at 2.5-5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle. Earth Planet Sci Lett, 267: 17–31

    Article  Google Scholar 

  • Thomson A R, Walter M J, Kohn S C, Brooker R A. 2016. Slab melting as a barrier to deep carbon subduction. Nature, 529: 76–79

    Article  Google Scholar 

  • Thorkelson D J, Madsen J K, Sluggett C L. 2011. Mantle flow through the Northern Cordilleran slab window revealed by volcanic geochemistry. Geology, 39: 267–270

    Article  Google Scholar 

  • Till C B, Grove T L, Withers A C. 2012. The beginnings of hydrous mantle wedge melting. Contrib Mineral Petrol, 163: 669–688

    Article  Google Scholar 

  • Tomita T. 1935. On the chemical composition of the Cenozoic alkaline suite of the circum-japan sea region. J Shanghai Sci Inst, 1: 227–306

    Google Scholar 

  • Tonarini S, Leeman W P, Leat P T. 2011. Subduction erosion of forearc mantle wedge implicated in the genesis of the South Sandwich Island (SSI) arc: Evidence from boron isotope systematics. Earth Planet Sci Lett, 301: 275–284

    Article  Google Scholar 

  • Tsuno K, Dasgupta R. 2011. Melting phase relation of nominally anhydrous, carbonated pelitic-eclogite at 2.5-3.0 GPa and deep cycling of sedimentary carbon. Contrib Mineral Petrol, 161: 743–763

    Article  Google Scholar 

  • Tsuno K, Dasgupta R. 2012. The effect of carbonates on near-solidus melting of pelite at 3 GPa: Relative efficiency of H2O and CO2 sub-duction. Earth Planet Sci Lett, 319-320: 185–196

    Article  Google Scholar 

  • Turner S, Rushmer T, Reagan M, Moyen J F. 2014. Heading down early on? Start of subduction on Earth. Geology, 42: 139–142

    Article  Google Scholar 

  • Turner S J, Langmuir C H, Dungan M A, Escrig S. 2017. The importance of mantle wedge heterogeneity to subduction zone magmatism and the origin of EM1. Earth Planet Sci Lett, 472: 216–228

    Article  Google Scholar 

  • Tursack E, Liang Y. 2012. A comparative study of melt-rock reactions in the mantle: Laboratory dissolution experiments and geological field observations. Contrib Mineral Petrol, 163: 861–876

    Article  Google Scholar 

  • Ulmer P, Trommsdorff V. 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science, 268: 858–861

    Article  Google Scholar 

  • Van den Bleeken G, Muntener O, Ulmer P. 2010. Reaction processes between tholeiitic melt and residual peridotite in the uppermost mantle: An experimental study at 0.8 GPa. J Petrol, 51: 153–183

    Article  Google Scholar 

  • Van den Bleeken G, Müntener O, Ulmer P. 2011. Melt variability in percolated peridotite: An experimental study applied to reactive migration of tholeiitic basalt in the upper mantle. Contrib Mineral Petrol, 161: 921–945

    Article  Google Scholar 

  • Varfalvy V, Hébert R, Bedard J H. 1996. Interactions between melt and upper-mantle peridotites in the north arm mountain massif, Bay of islands ophiolite, Newfoundland, Canada: Implications for the genesis of boninitic and related magmas. Chem Geol, 129: 71–90

    Article  Google Scholar 

  • Villiger S, Ulmer P, Müntener O, Thompson A B. 2004. The liquid line of descent of anhydrous, mantle-derived, tholeiitic liquids by fractional and equilibrium crystallization—An experimental study at 1.0 GPa. J Petrol, 45: 2369–2388

    Article  Google Scholar 

  • Wallace P J. 2005. Volatiles in subduction zone magmas: Concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res, 140: 217–240

    Article  Google Scholar 

  • Wang C G, Liang Y, Dygert N, Xu W L. 2016. Formation of orthopyr-oxenite by reaction between peridotite and hydrous basaltic melt: An experimental study. Contrib Mineral Petrol, 171: 77

    Article  Google Scholar 

  • Wang C G, Liang Y, Xu W L, Dygert N. 2013. Effect of melt composition on basalt and peridotite interaction: Laboratory dissolution experiments with applications to mineral compositional variations in mantle xeno-liths from the North China Craton. Contrib Mineral Petrol, 166: 1469–1488

    Article  Google Scholar 

  • Wang M L, Zang C J, Tang H F. 2019. The effect of P-T on the reaction between tonalitic melt and mantle lherzolite at 2-4 GPa and implications for evolution of North China Cratonic Lithosphere and generation of High Mg# andesite. Lithos, 324-325: 626–639

    Article  Google Scholar 

  • Wang Q, Wyman A, Xu J F, Wan Y S, Li C F, Zi F, Jiang Z Q, Qiu H N, Chu Z Y, Zhao Z H, Dong Y H. 2008. Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet): Evidence for metasomatism by slab-derived melts in the mantle wedge. Contrib Mineral Petrol, 155: 473–490

    Article  Google Scholar 

  • Wang Q, Wyman D A, Zhao Z H, Xu J F, Bai Z H, Xiong X L, Dai T M, Li C F, Chu Z Y. 2007. Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): Implications for Phanerozoic crustal growth in the Central Asia orogenic belt. Chem Geol, 236: 42–64

    Article  Google Scholar 

  • Wang Q, Tang G, Hao L, Wyman D, Ma L, Dan W, Zhang X, Liu J, Huang T, Xu C. 2020. Ridge subduction, magmatism, and metallogenesis. Sci China Earth Sci, 63: 1499–1518

    Article  Google Scholar 

  • Whattam S A. 2018. Primitive magmas in the early Central American volcanic arc system generated by plume-induced subduction initiation. Front Earth Sci, 6: 114

    Article  Google Scholar 

  • Williams H M, Prytulak J, Woodhead J D, Kelley K A, Brounce M, Plank T. 2018. Interplay of crystal fractionation, sulfide saturation and oxygen fugacity on the iron isotope composition of arc lavas: An example from the Marianas. Geochim Cosmochim Acta, 226: 224–243

    Article  Google Scholar 

  • Wilson M. 1989. Igneous Petrogenesis. Berlin: Springer

    Book  Google Scholar 

  • Winter J D. 2014. Principles of Igneous and Metamorphic Petrology. Essex: Pearson Education

    Google Scholar 

  • Wolfe R C, Cooke D R. 2011. Geology of the didipio region and genesis of the dinkidi alkalic porphyry Cu-Au deposit and related pegmatites, northern luzon, philippines. Econ Geol, 106: 1279–1315

    Article  Google Scholar 

  • Woodland A B, Bulatov V K, Brey G P, Girnis AV, Höfer H E, Gerdes A. 2018. Subduction factory in an ampoule: Experiments on sediment-peridotite interaction under temperature gradient conditions. Geochim Cosmochim Acta, 223: 319–349

    Article  Google Scholar 

  • Wu F Y, Wang J G, Liu C Z, Liu T, Zhang C, Ji W Q. 2019. Intra-oceanic arc: Its formation and evolution (in Chinese with English abstract). Acta Petrol Sin, 35: 1–15

    Article  Google Scholar 

  • Xia X H, Song S G, Niu Y L. 2012. Tholeiite-Boninite terrane in the North Qilian suture zone: Implications for subduction initiation and back-arc basin development. Chem Geol, 328: 259–277

    Article  Google Scholar 

  • Xie W, Xu Y G, Chen Y B, Luo Z Y, Hong L B, Ma L, Liu H Q. 2016. High-alumina basalts from the Bogda Mountains suggest an arc setting for Chinese Northern Tianshan during the Late Carboniferous. Lithos, 256-257: 165–181

    Article  Google Scholar 

  • Xu Y G. 1999. Continental basaltic magmatism related to lithospheric extension: Nature and geodynamic processes. In: Zheng Y F, ed. Progresses in Chemical Geodynamics. Beijing: Science Press. 119–167

    Google Scholar 

  • Xu Y G, Ma J L, Huang X L, Iizuka Y, Chung S L, Wang Y B, Wu X Y. 2004. Early Cretaceous gabbroic complex from Yinan, Shandong Province: Petrogenesis and mantle domains beneath the North China Craton. Int J Earth Sci-Geol Rundsch, 93: 1025–1041

    Article  Google Scholar 

  • Yoder H S, Tilley C E. 1962. Origin of basalt magmas: An experimental study of natural and synthetic rock systems. J Petrol, 3: 342–532

    Article  Google Scholar 

  • Zhang Y Y, Yuan C, Sun M, Long X P, Wang Y P, Jiang Y D, Lin Z F. 2017. Arc magmatism associated with steep subduction: Insights from trace element and Sr-Nd-Hf-B isotope systematics. J Geophys Res Solid Earth, 122: 1816–1834

    Google Scholar 

  • Zheng Y F. 2019. Subduction zone geochemistry: Geosci Front, 10: 1223–1254

    Google Scholar 

  • Zheng Y F, Xu Z, Chen L, Dai L Q, Zhao Z F. 2020. Chemical geody-namics of mafic magmatism above subduction zones. J Asian Earth Sci, 194: 104185

    Article  Google Scholar 

  • Zheng Y F, Chen Y X, Dai L Q, Zhao Z F. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Sci China Earth Sci, 58: 1045–1069

    Article  Google Scholar 

  • Zheng Y F, Chen R X, Xu Z, Zhang S B. 2016. The transport of water in subduction zones. Sci China Earth Sci, 59: 651–682

    Article  Google Scholar 

  • Zhu G, Gerya T V, Yuen D A, Honda S, Yoshida T, Connolly J A D. 2009. Three-dimensional dynamics of hydrous thermal-chemical plumes in oceanic subduction zones. Geochem Geophys Geosyst, 10: Q11006

    Article  Google Scholar 

  • Zimmer M M, Plank T, Hauri E H, Yogodzinski G M, Stelling P, Larsen J, Singer B, Jicha B, Mandeville C, Nye C J. 2010. The role of water in generating the calc-alkaline trend: New volatile data for Aleutian magmas and a new tholeiitic index. J Petrol, 51: 2411–2444

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Yong-Fei ZHENG for inviting to write this paper and are grateful to ShuGuang Song and other three anonymous reviewers for their constructive comments which help improve the manuscript. This work was supported by State Ocean Bureau International Collaboration Program (Grant No. GASI-GEOGE-02), the National Natural Science Foundation of China (Grant Nos. 91855215, 41630208) and CAS Strategy Program B (Grant No. XDB18000000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yigang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Wang, Q., Tang, G. et al. The origin of arc basalts: New advances and remaining questions. Sci. China Earth Sci. 63, 1969–1991 (2020). https://doi.org/10.1007/s11430-020-9675-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-020-9675-y

Keywords

Navigation