Skip to main content
Log in

Deficiency of betaine-homocysteine methyltransferase activates glucose-6-phosphate dehydrogenase (G6PD) by decreasing arginine methylation of G6PD in hepatocellular carcinogenesis

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Betaine-homocysteine methyltransferase (BHMT) regulates protein methylation and is correlated with tumorigenesis; however, the effects and regulation of BHMT in hepatocarcinogenesis remain largely unexplored. Here, we determined the clinical significance of BHMT in the occurrence and progression of hepatocellular carcinoma (HCC) using tissue samples from 198 patients. BHMT was to be frequently found (86.6%) expressed at relatively low levels in HCC tissues and was positively correlated with the overall survival of patients with HCC. Bhmt overexpression effectively suppressed several malignant phenotypes in hepatoma cells in vitro and in vivo, whereas complete knockout of Bhmt (Bhmt−/−) produced the opposite effect. We combined proteomics, metabolomics, and molecular biological strategies and detected that Bhmt−/− promoted hepatocarcinogenesis and tumor progression by enhancing the activity of glucose-6-phosphate dehydrogenase (G6PD) and PPP metabolism in DEN-induced HCC mouse and subcutaneous tumor-bearing models. In contrast, restoration of Bhmt with an AAV8-Bhmt injection or pharmacological inhibition of G6PD attenuated hepatocarcinogenesis. Additionally, coimmunoprecipitation identified monomethylated modifications of the G6PD, and BHMT regulated the methylation of G6PD. Protein sequence analysis, generation and application of specific antibodies, and site-directed mutagenesis indicated G6PD methylation at the arginine residue 246. Furthermore, we established bidirectionally regulated BHMT cellular models combined with methylation-deficient G6PD mutants to demonstrate that BHMT potentiated arginine methylation of G6PD, thereby inhibiting G6PD activity, which in turn suppressed hepatocarcinogenesis. Taken together, this study reveals a new methylation-regulatory mechanism in hepatocarcinogenesis owing to BHMT deficiency, suggesting a potential therapeutic strategy for HCC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berardi, D.E., Bock-Hughes, A., Terry, A.R., Drake, L.E., Bozek, G., and Macleod, K.F. (2022). Lipid droplet turnover at the lysosome inhibits growth of hepatocellular carcinoma in a BNIP3-dependent manner. Sci Adv 8, eabo2510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, F., Luo, A., and Yang, C. (2021). G6PD inhibits ferroptosis in hepatocellular carcinoma by targeting cytochrome P450 oxidoreductase. Cell Signal 87, 110098.

    Article  CAS  PubMed  Google Scholar 

  • Cao, Y., Ding, W.W., Zhang, J.Z., Gao, Q., Yang, H.X., Cao, W.S., Wang, Z.X., Fang, L., and Du, R.H. (2019). Significant down-regulation of urea cycle generates clinically relevant proteomic signature in hepatocellular carcinoma patients with macrovascular invasion. J Proteome Res 18, 2032–2044.

    Article  CAS  PubMed  Google Scholar 

  • Chao, T., Liu, Z., Zhang, Y., Zhang, L., Huang, R., He, L., Gu, Y., Chen, Z., Zheng, Q., Shi, L., et al. (2019). Precise and rapid validation of candidate gene by allele specific knockout with CRISPR/Cas9 in wild mice. Front Genet 10, 124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Che, N., Ng, K.Y., Wong, T.L., Tong, M., Kau, P.W., Chan, L.H., Lee, T.K., Huen, M.S., Yun, J.P., and Ma, S. (2021). PRMT6 deficiency induces autophagy in hostile microenvironments of hepatocellular carcinoma tumors by regulating BAG5-associated HSC70 stability. Cancer Lett 501, 247–262.

    Article  CAS  PubMed  Google Scholar 

  • Dai, X., Xin, Y., Xu, W., Tian, X., Wei, X., and Zhang, H. (2021). CBP-mediated Slug acetylation stabilizes Slug and promotes EMT and migration of breast cancer cells. Sci China Life Sci 64, 563–574.

    Article  CAS  PubMed  Google Scholar 

  • Feng, J., Dang, Y., Zhang, W., Zhao, X., Zhang, C., Hou, Z., Jin, Y., McNutt, M.A., Marks, A.R., and Yin, Y. (2019). PTEN arginine methylation by PRMT6 suppresses PI3K-AKT signaling and modulates pre-mRNA splicing. Proc Natl Acad Sci USA 116, 6868–6877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, J., Zhang, H.P., Sun, Y.H., Guo, W.Z., Li, J., Tang, H.W., Guo, D.F., Zhang, J.K., Shi, X.Y., Yu, D.S., et al. (2020). Synaptopodin-2 promotes hepatocellular carcinoma metastasis via calcineurin-induced nuclear-cytoplasmic translocation. Cancer Lett 482, 8–18.

    Article  CAS  PubMed  Google Scholar 

  • Garrido, F., Pacheco, M., Vargas-Martinez, R., Velasco-Garcia, R., Jorge, I., Serrano, H., Portillo, F., Vazquez, J., and Pajares, M.A. (2018). Identification of hepatic protein-protein interaction targets for betaine homocysteine S-methyltransferase. PLoS ONE 13, e0199472.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grželj, J., Mlinarič-Raščan, I., Marko, P.B., Marovt, M., Gmeiner, T., and Šmid, A. (2021). Polymorphisms in GNMT and DNMT3b are associated with methotrexate treatment outcome in plaque psoriasis. Biomed Pharmacother 138, 111456.

    Article  PubMed  Google Scholar 

  • Gupta, C., Vikram, A., Tripathi, D.N., Ramarao, P., and Jena, G.B. (2010). Antioxidant and antimutagenic effect of quercetin against DEN induced hepatotoxicity in rat. Phytother Res 24, 119–128.

    Article  CAS  PubMed  Google Scholar 

  • Haberl, E.M., Pohl, R., Rein-Fischboeck, L., Höring, M., Krautbauer, S., Liebisch, G., and Buechler, C. (2021). Accumulation of cholesterol, triglycerides and ceramides in hepatocellular carcinomas of diethylnitrosamine injected mice. Lipids Health Dis 20, 135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, R., Guo, G., Lu, L., Fu, R., Luo, J., Liu, Z., Gu, Y., Yang, W., Zheng, Q., Chao, T., et al. (2019). The three members of the Vav family proteins form complexes that concur to foam cell formation and atherosclerosis. J Lipid Res 60, 2006–2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, R., McConnell, R., Catherine, C., Xu, S., Walker, D.I., Stratakis, N., Jones, D.P., Miller, G.W., Peng, C., Conti, D.V., et al. (2020). Perfluoroalkyl substances and severity of nonalcoholic fatty liver in children: an untargeted metabolomics approach. Environ Int 134, 105220.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H., Barua, A., Huang, L., Zhou, T., Bolaji, M., Zachariah, S., Mitra, A., Jung, S.Y., He, B., and Feng, Q. (2023). The cancer testis antigen TDRD1 regulates prostate cancer proliferation by associating with the snRNP biogenesis machinery. Oncogene 42, 1821–1831.

    Article  CAS  PubMed  Google Scholar 

  • Koh, C.M., Bezzi, M., Low, D.H.P., Ang, W.X., Teo, S.X., Gay, F.P.H., Al-Haddawi, M., Tan, S.Y., Osato, M., Sabò, A., et al. (2015). MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis. Nature 523, 96–100.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.H., So, J., and Shin, D. (2023). Hepatocyte-to-cholangiocyte conversion occurs through transdifferentiation independently of proliferation in zebrafish. Hepatology 77, 1198–1210.

    Article  PubMed  Google Scholar 

  • Li, G., Li, X., Zhuang, S., Wang, L., Zhu, Y., Chen, Y., Sun, W., Wu, Z., Zhou, Z., Chen, J., et al. (2022a). Gene editing and its applications in biomedicine. Sci China Life Sci 65, 660–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, M., He, X., Guo, W., Yu, H., Zhang, S., Wang, N., Liu, G., Sa, R., Shen, X., Jiang, Y., et al. (2020). Aldolase B suppresses hepatocellular carcinogenesis by inhibiting G6PD and pentose phosphate pathways. Nat Cancer 1, 735–747.

    Article  CAS  PubMed  Google Scholar 

  • Li, Q., Zhang, L., Yang, Q., Li, M., Pan, X., Xu, J., Zhong, C., Yao, F., Zhang, R., Zhou, S., et al. (2023a). Thymidine kinase 1 drives hepatocellular carcinoma in enzyme-dependent and -independent manners. Cell Metab 35, 912–927.e7.

    Article  CAS  PubMed  Google Scholar 

  • Li, S., Zhu, Y., Li, R., Huang, J., You, K., Yuan, Y., and Zhuang, S. (2021). LncRNA lnc-APUE is repressed by HNF4α and promotes G1/S phase transition and tumor growth by regulating miR-20b/E2F1 axis. Adv Sci 8, 2003094.

    Article  CAS  Google Scholar 

  • Li, T., Qian, C., Gu, Y., Zhang, J., Li, S., and Xia, N. (2023b). Current progress in the development of prophylactic and therapeutic vaccines. Sci China Life Sci 66, 679–710.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Jiang, W., Feng, Y., Wu, L., Jia, Y., and Zhao, R. (2022b). Betaine alleviates high-fat diet-induced disruptionof hepatic lipid and iron homeostasis in mice. Int J Mol Sci 23, 6263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, C., Zou, W., Nie, D., Li, S., Duan, C., Zhou, M., Lai, P., Yang, S., Ji, S., Li, Y., et al. (2022). Loss of PRMT7 reprograms glycine metabolism to selectively eradicate leukemia stem cells in CML. Cell Metab 34, 818–835.e7.

    Article  PubMed  Google Scholar 

  • Liu, R., Li, W., Tao, B., Wang, X., Yang, Z., Zhang, Y., Wang, C., Liu, R., Gao, H., Liang, J., et al. (2019). Tyrosine phosphorylation activates 6-phosphogluconate dehydrogenase and promotes tumor growth and radiation resistance. Nat Commun 10, 991.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, X., He, J.Z., Mao, L., Zhang, Y., Cui, W.W., Duan, S., Jiang, A., Gao, Y., Sang, Y., and Huang, G. (2021). EPZ015666, a selective protein arginine methyltransferase 5 (PRMT5) inhibitor with an antitumour effect in retinoblastoma. Exp Eye Res 202, 108286.

    Article  CAS  PubMed  Google Scholar 

  • Lupu, D.S., Orozco, L.D., Wang, Y., Cullen, J.M., Pellegrini, M., and Zeisel, S.H. (2017). Altered methylation of specific DNA loci in the liver of Bhmt-null mice results in repression of Iqgap2 and F2rl2 and is associated with development of preneoplastic foci. FASEB J 31, 2090–2103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, H., Zhang, F., Zhou, L., Cao, T., Sun, D., Wen, S., Zhu, J., Xiong, Z., Tsau, M.T., Cheng, M.L., et al. (2021). c-Src facilitates tumorigenesis by phosphorylating and activating G6PD. Oncogene 40, 2567–2580.

    Article  CAS  PubMed  Google Scholar 

  • Min, H.Y., Lee, H.J., Suh, Y.A., Pei, H., Kwon, H., Jang, H.J., Yun, H.J., Moon, H.G., and Lee, H.Y. (2022). Targeting epidermal growth factor receptor in paclitaxel-resistant human breast and lung cancer cells with upregulated glucose-6-phosphate dehydrogenase. Br J Cancer 127, 661–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni, Y., Yang, Z., Agbana, Y.L., Bai, H., Wang, L., Yang, L., Yi, Z., Cheng, J., Zhang, Q., Kuang, Y., et al. (2021). Silent information regulator 2 promotes clear cell renal cell carcinoma progression through deacetylation and small ubiquitin-related modifier 1 modification of glucose 6-phosphate dehydrogenase. Cancer Sci 112, 4075–4086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owumi, S.E., Olugbami, J.O., Akinnifesi, A.O., and Odunola, O.A. (2021). Leaf paste of Telfairia occidentalis favourably modulates deleterious effects associated with exposure to diethylnitrosamine in male Wistar rats. J Complement Integr Med 20, 590–596.

    Article  PubMed  Google Scholar 

  • Qi, X., Chen, S., He, H., Wen, W., and Wang, H. (2021). The role and potential application of extracellular vesicles in liver cancer. Sci China Life Sci 64, 1281–1294.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, P., Sun, J., Man, S., Yang, H., Ma, L., Yu, P., and Gao, W. (2017). Curcumin attenuates N-nitrosodiethylamine-induced liver injury in mice by utilizing the method of metabonomics. J Agric Food Chem 65, 2000–2007.

    Article  CAS  PubMed  Google Scholar 

  • Roy, D.G., Chen, J., Mamane, V., Ma, E.H., Muhire, B.M., Sheldon, R.D., Shorstova, T., Koning, R., Johnson, R.M., Esaulova, E., et al. (2020). Methionine metabolism shapes T helper cell responses through regulation of epigenetic reprogramming. Cell Metab 31, 250–266.e9.

    Article  CAS  PubMed  Google Scholar 

  • Saw, P.E., Xu, X., Chen, J., and Song, E.W. (2021). Non-coding RNAs: the new central dogma of cancer biology. Sci China Life Sci 64, 22–50.

    Article  CAS  PubMed  Google Scholar 

  • Seyfried, N.T., Huysentruyt, L.C., Atwood Iii, J.A., Xia, Q., Seyfried, T.N., and Orlando, R. (2008). Up-regulation of NG2 proteoglycan and interferon-induced transmembrane proteins 1 and 3 in mouse astrocytoma: a membrane proteomics approach. Cancer Lett 263, 243–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, X., Zhang, Y., Zhang, X., Yao, Y., Zheng, Y., Cui, X., Liu, C., Wang, Q., and Li, J. Z. (2019). Long non-coding RNA Bhmt-AS attenuates hepatic gluconeogenesis via modulation of Bhmt expression. Biochem Biophys Res Commun 516, 215–221.

    Article  CAS  PubMed  Google Scholar 

  • Shi, Y., Niu, Y., Yuan, Y., Li, K., Zhong, C., Qiu, Z., Li, K., Lin, Z., Yang, Z., Zuo, D., et al. (2023). PRMT3-mediated arginine methylation of IGF2BP1 promotes oxaliplatin resistance in liver cancer. Nat Commun 14, 1932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, P., Charles, S., Madhavan, T., Munusamy-Ramanujam, G., Saraswathi, N.T., Arasu, M.V., Al-Dhabi, N.A., Arshad, A., Arockiaraj, J., and Mala, K. (2021). Pharmacologic downregulation of protein arginine methyltransferase1 expression by adenosine dialdehyde increases cell senescence in breast cancer. Eur J Pharmacol 891, 173697.

    Article  CAS  PubMed  Google Scholar 

  • Singhal, N.K., Sternbach, S., Fleming, S., Alkhayer, K., Shelestak, J., Popescu, D., Weaver, A., Clements, R., Wasek, B., Bottiglieri, T., et al. (2020). Betaine restores epigenetic control and supports neuronal mitochondria in the cuprizone mouse model of multiple sclerosis. Epigenetics 15, 871–886.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sternbach, S., West, N., Singhal, N.K., Clements, R., Basu, S., Tripathi, A., Dutta, R., Freeman, E.J., and McDonough, J. (2021). The BHMT-betaine methylation pathway epigenetically modulates oligodendrocyte maturation. PLoS ONE 16, e0250486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, S., Cao, Y., Cai, Z., Nie, X., Ruan, J., Zhou, Z., Ruan, G., Zhu, Z., Han, W., and Ding, C. (2022). The lncRNA PILA promotes NF-κB signaling in osteoarthritis by stimulating the activity of the protein arginine methyltransferase PRMT1. Sci Signal 15, eabm6265.

    Article  Google Scholar 

  • Teesalu, M., Rovenko, B.M., and Hietakangas, V. (2017). Salt-inducible kinase 3 provides sugar tolerance by regulating NADPH/NADP+ redox balance. Curr Biol 27, 458–464.

    Article  CAS  PubMed  Google Scholar 

  • Teng, Y.W., Ellis, J.M., Coleman, R.A., and Zeisel, S.H. (2012). Mouse betaine-homocysteine S-methyltransferase deficiency reduces body fat via increasing energy expenditure and impairing lipid synthesis and enhancing glucose oxidation in white adipose tissue. J Biol Chem 287, 16187–16198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng, Y.W., Mehedint, M.G., Garrow, T.A., and Zeisel, S.H. (2011). Deletion of betaine-homocysteine S-methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas. J Biol Chem 286, 36258–36267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ti, D., Bai, M., Li, X., Wei, J., Chen, D., Wu, Z., Wang, Y., and Han, W. (2021). Adaptive T cell immunotherapy in cancer. Sci China Life Sci 64, 363–371.

    Article  PubMed  Google Scholar 

  • Tsuchiya, H., da Costa, K.A., Lee, S., Renga, B., Jaeschke, H., Yang, Z., Orena, S.J., Goedken, M.J., Zhang, Y., Kong, B., et al. (2015). Interactions between nuclear receptor SHP and FOXA1 maintain oscillatory homocysteine homeostasis in mice. Gastroenterology 148, 1012–1023.e14.

    Article  CAS  PubMed  Google Scholar 

  • Wang, M., Hu, J., Yan, L., Yang, Y., He, M., Wu, M., Li, Q., Gong, W., Yang, Y., Wang, Y., et al. (2019). High glucose-induced ubiquitination of G6PD leads to the injury of podocytes. FASEB J 33, 6296–6310.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y.P., Zhou, L.S., Zhao, Y.Z., Wang, S.W., Chen, L.L., Liu, L.X., Ling, Z.Q., Hu, F. J., Sun, Y.P., Zhang, J.Y., et al. (2014). Regulation of G6PD acetylation by KAT9/ SIRT2 modulates NADPH homeostasis and cell survival during oxidative stress. EMBO J 33, 1304–1320.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitburn, J., Rao, S.R., Morris, E.V., Tabata, S., Hirayama, A., Soga, T., Edwards, J.R., Kaya, Z., Palmer, C., Hamdy, F.C., et al. (2022). Metabolic profiling of prostate cancer in skeletal microenvironments identifies G6PD as a key mediator of growth and survival. Sci Adv 8, eabf9096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiśniewski, J.R., Zougman, A., Nagaraj, N., and Mann, M. (2009). Universal sample preparation method for proteome analysis. Nat Methods 6, 359–362.

    Article  PubMed  Google Scholar 

  • Wojtala, M., Rybaczek, D., Wielgus, E., Sobalska-Kwapis, M., Strapagiel, D., and Balcerczyk, A. (2021). The role of lysine-specific demethylase 1 (LSD1) in shaping the endothelial inflammatory response. Cell Physiol Biochem 55, 569–589.

    CAS  PubMed  Google Scholar 

  • Xu, W., Deng, B., Lin, P., Liu, C., Li, B., Huang, Q., Zhou, H., Yang, J., and Qu, L. (2020). Ribosome profiling analysis identified a KRAS-interacting microprotein that represses oncogenic signaling in hepatocellular carcinoma cells. Sci China Life Sci 63, 529–542.

    Article  CAS  PubMed  Google Scholar 

  • Yamawaki, K., Mori, Y., Sakai, H., Kanda, Y., Shiokawa, D., Ueda, H., Ishiguro, T., Yoshihara, K., Nagasaka, K., Onda, T., et al. (2021). Integrative analyses of gene expression and chemosensitivity of patient-derived ovarian cancer spheroids link G6PD-driven redox metabolism to cisplatin chemoresistance. Cancer Lett 521, 29–38.

    Article  CAS  PubMed  Google Scholar 

  • Yang, X., Zeng, Z., Jie, X., Wang, Y., Han, J., Zheng, Z., Li, J., Liu, H., Dong, X., Wu, G., et al. (2022). Arginine methyltransferase PRMT5 methylates and destabilizes Mxi1 to confer radioresistance in non-small cell lung cancer. Cancer Lett 532, 215594.

    Article  CAS  PubMed  Google Scholar 

  • Yin, S., Liu, L., Ball, L.E., Wang, Y., Bedford, M.T., Duncan, S.A., Wang, H., and Gan, W. (2023). CDK5-PRMT1-WDR24 signaling cascade promotes mTORC1 signaling and tumor growth. Cell Rep 42, 112316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, S., Liu, L., Brobbey, C., Palanisamy, V., Ball, L.E., Olsen, S.K., Ostrowski, M.C., and Gan, W. (2021). PRMT5-mediated arginine methylation activates AKT kinase to govern tumorigenesis. Nat Commun 12, 3444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, S., Ma, L., Shao, T., Zhang, M., Guan, Y., Wang, L., Hu, Y., Chen, X., Han, H., Shen, N., et al. (2022). Enhanced genome editing to ameliorate a genetic metabolic liver disease through co-delivery of adeno-associated virus receptor. Sci China Life Sci 65, 718–730.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, C., Ouyang, J., Sun, L., Zeng, Z., Tan, Y., Zeng, F., and Wu, S. (2022). An activatable probe for detection and therapy of food-additive-related hepatic injury via NIR-II fluorescence/optoacoustic imaging and biomarker-triggered drug release. Anal Chim Acta 1208, 339831.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., He, Y., Jiang, Y., Wu, Q., Liu, Y., Xie, Q., Zou, Y., Wu, J., Zhang, C., Zhou, Z., et al. (2023). PRMT1 reverts the immune escape of necroptotic colon cancer through RIP3 methylation. Cell Death Dis 14, 233.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Xu, Y., Lu, W., Ghergurovich, J.M., Guo, L., Blair, I.A., Rabinowitz, J.D., and Yang, X. (2021). Upregulation of antioxidant capacity and nucleotide precursor availability suffices for oncogenic transformation. Cell Metab 33, 94–109.e8.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, B., Wang, Y., Zhang, L., Shi, X., Kong, H., Zhang, M., Liu, Y., Shao, X., Liu, Z., Song, H., et al. (2022). The palmitoylation of AEG-1 dynamically modulates the progression of hepatocellular carcinoma. Theranostics 12, 6898–6914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, L., Jia, X., Shang, Y., Sun, Y., Liu, Z., Liu, J., Jiang, W., Deng, S., Yao, Q., Chen, J., et al. (2023). PRMT1 inhibition promotes ferroptosis sensitivity via ACSL1 upregulation in acute myeloid leukemia. Mol Carcinog 62, 1119–1135.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, L., Wang, F., Sun, R., Chen, X., Zhang, M., Xu, Q., Wang, Y., Wang, S., Xiong, Y., Guan, K., et al. (2016). SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense. EMBO Rep 17, 811–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, Y., Liu, L., Tan, D., Sun, W., Ke, Q., Yue, X., and Bai, B. (2021). S-desulfurization: A different covalent modification mechanism from persulfidation by GSH. Free Radic Biol Med 167, 54–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (82103282), Higher Education Disciplinary Innovation Program (D20036), Henan Province Medical Science and Technology Research Plan (SBGJ202103061, LHGJ20190135), “Science and Technology to create Central Plains” Young Talent Lifting Project (2023HYTP041), and Henan Charity General Federation of Hepatobiliary Care Fund (GDXZ2023002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuijun Zhang or Wenzhi Guo.

Ethics declarations

The author(s) declare that they have no conflict of interest.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Shi, X., Sun, Y. et al. Deficiency of betaine-homocysteine methyltransferase activates glucose-6-phosphate dehydrogenase (G6PD) by decreasing arginine methylation of G6PD in hepatocellular carcinogenesis. Sci. China Life Sci. (2024). https://doi.org/10.1007/s11427-023-2481-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11427-023-2481-3

Navigation