Skip to main content
Log in

SUB1 promotes colorectal cancer metastasis by activating NF-κB signaling via UBR5-mediated ubiquitination of UBXN1

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Metastasis accounts for the major cause of colorectal cancer (CRC) related mortality due to the lack of effective treatments. In this study, we integrated the single-cell RNA-seq (scRNA-seq) and bulk RNA-seq data and identified the transcriptional coactivator SUB1 homolog (Sac-Saccharomyces cerevisiae)/PC4 (positive cofactor 4) associated with CRC metastasis. Elevated SUB1 expression was correlated with advanced tumor stage and poor survival in CRC. In vivo and vitro assays showed that SUB1 depletion could inhibit the invasive and metastatic abilities of CRC cells. SUB1 activated NF-κB signaling and its transcriptional target genes CXCL1 and CXCL3 to drive CRC metastasis. Mechanistically, SUB1 integrated with the E3 ubiquitin-protein ligase UBR5 and increased its protein level in CRC cells. Subsequently, the increased UBR5 mainly mediated Lys11-linked polyubiquitination and degradation of NF-κB negative regulator UBXN1, thus to activate the NF-κB signaling. Overall, our study demonstrated that SUB1 promoted CRC progression by modulating UBR5/UBXN1 and activating NF-κB signaling, providing a new therapeutic strategy for treating metastatic CRC through targeting SUB1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Data availability

All data included in this study are available from the public open-access databases or upon request by contact with the corresponding author Meng Xue (xuemeng@zju.edu.cn).

References

  • Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A.A., Kim, S., Wilson, C.J., Lehar, J., Kryukov, G.V., Sonkin, D., et al. (2012). The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brummelkamp, T.R., Nijman, S.M.B., Dirac, A.M.G., and Bernards, R. (2003). Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797–801.

    Article  CAS  PubMed  Google Scholar 

  • Cai, Y., Song, W., Li, J., Jing, Y., Liang, C., Zhang, L., Zhang, X., Zhang, W., Liu, B., An, Y., et al. (2022). The landscape of aging. Sci China Life Sci 65, 2354–2454.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chai, R.C., Chang, Y.Z., Chang, X., Pang, B., An, S.Y., Zhang, K.N., Chang, Y.H., Jiang, T., and Wang, Y.Z. (2021). YTHDF2 facilitates UBXN1 mRNA decay by recognizing METTL3-mediated m6A modification to activate NF-κB and promote the malignant progression of glioma. J Hematol Oncol 14, 109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakravarthi, B.V.S.K., Goswami, M.T., Pathi, S.S., Robinson, A.D., Cieslik, M., Chandrashekar, D.S., Agarwal, S., Siddiqui, J., Daignault, S., Carskadon, S.L., et al. (2016). MicroRNA-101 regulated transcriptional modulator SUB1 plays a role in prostate cancer. Oncogene 35, 6330–6340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L., Yuan, R., Wen, C., Liu, T., Feng, Q., Deng, X., Du, Y., and Peng, X. (2021). E3 ubiquitin ligase UBR5 promotes pancreatic cancer growth and aerobic glycolysis by downregulating FBP1 via destabilization of C/EBPa. Oncogene 40, 262–276.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L.F., and Greene, W.C. (2004). Shaping the nuclear action of NF-κB. Nat Rev Mol Cell Biol 5, 392–401.

    Article  CAS  PubMed  Google Scholar 

  • Chen, T., Li, J., Xu, M., Zhao, Q., Hou, Y., Yao, L., Zhong, Y., Chou, P.C., Zhang, W., Zhou, P., et al. (2017). PKCs phosphorylates MIIP and promotes colorectal cancer metastasis through inhibition of RelA deacetylation. Nat Commun 8, 939.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chi, X., Huang, M., Tu, H., Zhang, B., Lin, X., Xu, H., Dong, C., and Hu, X. (2023). Innate and adaptive immune abnormalities underlying autoimmune diseases: the genetic connections. Sci China Life Sci 66, 1482–1517.

    Article  PubMed  Google Scholar 

  • Ciardiello, F., Ciardiello, D., Martini, G., Napolitano, S., Tabernero, J., and Cervantes, A. (2022). Clinical management of metastatic colorectal cancer in the era of precision medicine. CA Cancer J Clin 72, 372–401.

    Article  PubMed  Google Scholar 

  • Conesa, C., and Acker, J. (2010). Sub1/PC4 a chromatin associated protein with multiple functions in transcription. RNA Biol 7, 287–290.

    Article  PubMed  Google Scholar 

  • Gao, L., Chen, S., Hong, M., Zhou, W., Wang, B., Qiu, J., Xia, J., Zhao, P., Fu, L., Wang, J., et al. (2021). Kinectin 1 promotes the growth of triple-negative breast cancer via directly co-activating NF-kappaB/p65 and enhancing its transcriptional activity. Sig Transduct Target Ther 6, 250.

    Article  CAS  Google Scholar 

  • Hayden, M.S., and Ghosh, S. (2008). Shared principles in NF-κB signaling. Cell 132, 344–362.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann, A., Natoli, G., and Ghosh, G. (2006). Transcriptional regulation via the NF-κB signaling module. Oncogene 25, 6706–6716.

    Article  CAS  PubMed  Google Scholar 

  • Jiao, H.L., Ye, Y.P., Yang, R.W., Sun, H.Y., Wang, S.Y., Wang, Y.X., Xiao, Z.Y., He, L. Q., Cai, J.J., Wei, W.T., et al. (2017). Downregulation of SAFB sustains the NFκB Pathway by targeting TAK1 during the progression of colorectal cancer. Clin Cancer Res 23, 7108–7118.

    Article  CAS  PubMed  Google Scholar 

  • Ju, W., Zheng, R., Zhang, S., Zeng, H., Sun, K., Wang, S., Chen, R., Li, L., Wei, W., and He, J. (2023). Cancer statistics in Chinese older people, 2022: current burden, time trends, and comparisons with the US, Japan, and the Republic of Korea. Sci China Life Sci 66, 1079–1091.

    Article  PubMed  Google Scholar 

  • Kuipers, E.J., Grady, W.M., Lieberman, D., Seufferlein, T., Sung, J.J., Boelens, P.G., van de Velde, C.J.H., and Watanabe, T. (2015). Colorectal cancer. Nat Rev Dis Primers 1, 15065.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, B., Zheng, L., Ye, J., Zhang, C., Zhou, J., Huang, Q., Guo, Y., Wang, L., Yu, P., Liu, S., et al. (2022). CREB1 contributes colorectal cancer cell plasticity by regulating lncRNA CCAT1 and NF-κB pathways. Sci China Life Sci 65, 1481–1497.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Zhang, W., Gao, J., Du, M., Li, H., Li, M., Cong, H., Fang, Y., Liang, Y., Zhao, D., et al. (2021a). E3 ubiquitin ligase UBR5 promotes the metastasis of pancreatic cancer via destabilizing F-actin capping protein CAPZA1. Front Oncol 11, 634167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Liu, X., Cui, X., Tan, Y., Wang, Q., Wang, Y., Xu, C., Fang, C., and Kang, C. (2021b). LncRNA PRADX-mediated recruitment of PRC2/DDX5 complex suppresses UBXN1 expression and activates NF-κB activity, promoting tumorigenesis. Theranostics 11, 4516–4530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Xie, P., Lu, L., Wang, J., Diao, L., Liu, Z., Guo, F., He, Y., Liu, Y., Huang, Q., et al. (2017). An integrated bioinformatics platform for investigating the human E3 ubiquitin ligase-substrate interaction network. Nat Commun 8, 347.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao, L., Song, M., Li, X., Tang, L., Zhang, T., Zhang, L., Pan, Y., Chouchane, L., and Ma, X. (2017). E3 ubiquitin ligase UBR5 drives the growth and metastasis of triple-negative breast cancer. Cancer Res 77, 2090–2101.

    Article  CAS  PubMed  Google Scholar 

  • Liu, G., Liu, B., Liu, X., Xie, L., He, J., Zhang, J., Dong, R., Ma, D., Dong, K., and Ye, M. (2021). ARID1B/SUB1-activated lncRNA HOXA-AS2 drives the malignant behaviour of hepatoblastoma through regulation of HOXA3. J Cell Mol Medi 25, 3524–3536.

    Article  CAS  Google Scholar 

  • Liu, S., Sun, X., Wang, M., Hou, Y., Zhan, Y., Jiang, Y., Liu, Z., Cao, X., Chen, P., Liu, Z., et al. (2014). A microRNA 221- and 222-mediated feedback loop maintains constitutive activation of NFκB and STAT3 in colorectal cancer cells. Gastroenterology 147, 847–859.e11.

    Article  CAS  PubMed  Google Scholar 

  • Mantovani, A., Allavena, P., Sica, A., and Balkwill, F. (2008). Cancer-related inflammation. Nature 454, 436–444.

    Article  CAS  PubMed  Google Scholar 

  • Mortusewicz, O., Roth, W., Li, N., Cardoso, M.C., Meisterernst, M., and Leonhardt, H. (2008). Recruitment of RNA polymerase II cofactor PC4 to DNA damage sites. J Cell Biol 183, 769–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochiai, K., Yamaoka, M., Swaminathan, A., Shima, H., Hiura, H., Matsumoto, M., Kurotaki, D., Nakabayashi, J., Funayama, R., Nakayama, K., et al. (2020). Chromatin protein PC4 orchestrates B cell differentiation by collaborating with IKAROS and IRF4. Cell Rep 33, 108517.

    Article  CAS  PubMed  Google Scholar 

  • Qian, D., Zhang, B., Zeng, X.L., Le Blanc, J.M., Guo, Y.H., Xue, C., Jiang, C., Wang, H. H., Zhao, T.S., Meng, M.B., et al. (2014). Inhibition of human positive cofactor 4 radiosensitizes human esophageal squmaous cell carcinoma cells by suppressing XLF-mediated nonhomologous end joining. Cell Death Dis 5, e1461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojo de la Vega, M., Chapman, E., and Zhang, D.D. (2018). NRF2 and the hallmarks of cancer. Cancer Cell 34, 21–43.

    Article  CAS  PubMed  Google Scholar 

  • Shi, R., Li, Y., Ran, L., Dong, Y., Zhou, X., Tang, J., Han, L., Wang, M., Pang, L., Qi, Y., et al. (2022). Screening and identification of HLA-A2-restricted neoepitopes for immunotherapy of non-microsatellite instability-high colorectal cancer. Sci China Life Sci 65, 572–587.

    Article  CAS  PubMed  Google Scholar 

  • Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., and Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71, 209–249.

    Article  PubMed  Google Scholar 

  • Vallabhapurapu, S., and Karin, M. (2009). Regulation and function of NF-κB transcription factors in the immune system. Annu Rev Immunol 27, 693–733.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Zhao, X., Jin, L., Wu, G., and Yang, Y. (2017). UBR5 contributes to colorectal cancer progression by destabilizing the tumor suppressor ECRG4. Dig Dis Sci 62, 2781–2789.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J.Y., Sarker, A.H., Cooper, P.K., and Volkert, M.R. (2004). The single-strand DNA binding activity of human PC4 prevents mutagenesis and killing by oxidative DNA damage. Mol Cell Biol 24, 6084–6093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y.B., Tan, B., Mu, R., Chang, Y., Wu, M., Tu, H.Q., Zhang, Y.C., Guo, S.S., Qin, X.H., Li, T., et al. (2015). Ubiquitin-associated domain-containing ubiquitin regulatory X (UBX) protein UBXN1 is a negative regulator of nuclear factor κB (NF-κB) signaling. J Biol Chem 290, 10395–10405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang, G., Wang, S., Chen, L., Song, M., Song, X., Wang, H., Zhou, P., Ma, X., and Yu, J. (2022). UBR5 targets tumor suppressor CDC73 proteolytically to promote aggressive breast cancer. Cell Death Dis 13, 451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, Z., Liang, H., Wang, J., Xu, X., Zhu, Y., Guo, A., Shen, X., Cao, F., and Chang, W. (2017). Significance of the E3 ubiquitin protein UBR5 as an oncogene and a prognostic biomarker in colorectal cancer. Oncotarget 8, 108079–108092.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye, X., Wu, H., Sheng, L., Liu, Y., Ye, F., Wang, M., Zhou, H., Su, Y., and Zhang, X. (2019). Oncogenic potential of truncated RXRa during colitis-associated colorectal tumorigenesis by promoting IL-6-STAT3 signaling. Nat Commun 10, 1463.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, H., Lin, L., Zhang, Z., Zhang, H., and Hu, H. (2020). Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Sig Transduct Target Ther 5, 209.

    Article  CAS  Google Scholar 

  • Zhang, J., Zhao, D., Zhang, L., Xiao, Y., Wu, Q., Wang, Y., Chen, J., and Zhan, Q. (2023). Src heterodimerically activates Lyn or Fyn to serve as targets for the diagnosis and treatment of esophageal squamous cell carcinoma. Sci China Life Sci 66, 1245–1263.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, M., Liu, Z.Z., Aoshima, K., Cai, W.L., Sun, H., Xu, T., Zhang, Y., An, Y., Chen, J.F., Chan, L.H., et al. (2022a). CECR2 drives breast cancer metastasis by promoting NF-κB signaling and macrophage-mediated immune suppression. Sci Transl Med 14, eabf5473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Q., Li, D., Dong, X., Zhang, X., Liu, J., Peng, L., Meng, B., Hua, Q., Pei, X., Zhao, L., et al. (2022b). LncDACH1 promotes mitochondrial oxidative stress of cardiomyocytes by interacting with sirtuin3 and aggravates diabetic cardiomyopathy. Sci China Life Sci 65, 1198–1212.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, X., Yang, M., Lin, Z., Mael, S.K., Li, Y., Zhang, L., Kong, Y., Zhang, Y., Ren, Y., Li, J., et al. (2022). REGy drives Lgr5+ stem cells to potentiate radiation induced intestinal regeneration. Sci China Life Sci 65, 1608–1623.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (82073229, 82072623).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangjing Wang or Meng Xue.

Ethics declarations

The author(s) declare that they have no conflict of interest.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Chen, W., Wang, Y. et al. SUB1 promotes colorectal cancer metastasis by activating NF-κB signaling via UBR5-mediated ubiquitination of UBXN1. Sci. China Life Sci. (2024). https://doi.org/10.1007/s11427-023-2429-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11427-023-2429-5

Keywords

Navigation