Skip to main content
Log in

Screening and identification of HLA-A2-restricted neoepitopes for immunotherapy of non-microsatellite instability-high colorectal cancer

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Colorectal cancer has one of the highest mortality rates among malignant tumors, and most patients with non-microsatellite instability-high (MSI-H) colorectal cancer do not benefit from targeted therapy or immune checkpoint inhibitors. Identification of immunogenic neoantigens is a promising strategy for inducing specific antitumor T cells for cancer immunotherapy. Here, we screened potential high-frequency neoepitopes from non-MSI-H colorectal cancer and tested their abilities to induce tumor-specific cytotoxic T cell responses. Three HLA-A2-restricted neoepitopes (P31, P50, and P52) were immunogenic and could induce cytotoxic T lymphocytes in peripheral blood mononuclear cells from healthy donors and colorectal cancer patients. Cytotoxic T lymphocytes induced in HLA-A2.1/Kb transgenic mice could recognize and lyse mutant neoepitope-transfected HLA-A2+ cancer cells. Adoptive transfer of cytotoxic T lymphocytes induced by the peptide pool of these three neoepitopes effectively inhibited tumor growth and increased the therapeutic effects of anti-PD-1 antibody. These results revealed the potential of high-frequency mutation-specific peptide-based immunotherapy as a personalized treatment approach for patients with non-MSI-H colorectal cancer. The combination of adoptive T cell therapy based on these neoepitopes with immune checkpoint inhibitors, such as anti-PD-1, could provide a promising treatment strategy for non-MSI-H colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, E., Araki, K., Hashimoto, M., Li, W., Riley, J.L., Cheung, J., Sharpe, A.H., Freeman, G.J., Irving, B.A., and Ahmed, R. (2018). Role of PD-1 during effector CD8 T cell differentiation. Proc Natl Acad Sci USA 115, 4749–4754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aurisicchio, L., Pallocca, M., Ciliberto, G., and Palombo, F. (2018). The perfect personalized cancer therapy: cancer vaccines against neoantigens. J Exp Clin Cancer Res 37, 86.

    Article  PubMed  PubMed Central  Google Scholar 

  • Balachandran, V.P., Luksza, M., Zhao, J.N., Makarov, V., Moral, J.A., Remark, R., Herbst, B., Askan, G., Bhanot, U., Senbabaoglu, Y., et al. (2017). Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551, 512–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonaventura, P., Shekarian, T., Alcazer, V., Valladeau-Guilemond, J., Valsesia-Wittmann, S., Amigorena, S., Caux, C., and Depil, S. (2019). Cold tumors: a therapeutic challenge for immunotherapy. Front Immunol 10, 168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cancer Genome Atlas, N. (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337.

    Article  Google Scholar 

  • Chen, F., Zou, Z., Du, J., Su, S., Shao, J., Meng, F., Yang, J., Xu, Q., Ding, N., Yang, Y., et al. (2019). Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors. J Clin Invest 129, 2056–2070.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, W., Zheng, R., Baade, P.D., Zhang, S., Zeng, H., Bray, F., Jemal, A., Yu, X.Q., and He, J. (2016). Cancer statistics in China, 2015. CA Cancer J Clin 66, 115–132.

    Article  PubMed  Google Scholar 

  • Chheda, Z.S., Kohanbash, G., Okada, K., Jahan, N., Sidney, J., Pecoraro, M., Yang, X., Carrera, D.A., Downey, K.M., Shrivastav, S., et al. (2018). Novel and shared neoantigen derived from histone 3 variant H3.3K27M mutation for glioma T cell therapy. J Exp Med 215, 141–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciardiello, D., Vitiello, P.P., Cardone, C., Martini, G., Troiani, T., Martinelli, E., and Ciardiello, F. (2019). Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat Rev 76, 22–32.

    Article  CAS  PubMed  Google Scholar 

  • De’Angelis, G.L., Bottarelli, L., Azzoni, C., De’Angelis, N., Leandro, G., Di Mario, F., Gaiani, F., and Negri, F. (2018). Microsatellite instability in colorectal cancer. Acta Biomed 89, 97–101.

    Google Scholar 

  • Ding, W., LaPlant, B.R., Call, T.G., Parikh, S.A., Leis, J.F., He, R., Shanafelt, T.D., Sinha, S., Le-Rademacher, J., Feldman, A.L., et al. (2017). Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood 129, 3419–3427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eso, Y., Shimizu, T., Takeda, H., Takai, A., and Marusawa, H. (2020). Microsatellite instability and immune checkpoint inhibitors: toward precision medicine against gastrointestinal and hepatobiliary cancers. J Gastroenterol 55, 15–26.

    Article  CAS  PubMed  Google Scholar 

  • Filby, A., Begum, J., Jalal, M., and Day, W. (2015). Appraising the suitability of succinimidyl and lipophilic fluorescent dyes to track proliferation in non-quiescent cells by dye dilution. Methods 82, 29–37.

    Article  CAS  PubMed  Google Scholar 

  • Forbes, S.A., Bhamra, G., Bamford, S., Dawson, E., Kok, C., Clements, J., Menzies, A., Teague, J.W., Futreal, P.A., and Stratton, M.R. (2008). The Catalogue of Somatic Mutations in Cancer (COSMIC). Curr Protoc Hum Genet 57, 10.11.1–10.11.26.

    Google Scholar 

  • Ganesh, K., Stadler, Z.K., Cercek, A., Mendelsohn, R.B., Shia, J., Segal, N. H., and Diaz Jr, L.A. (2019). Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat Rev Gastroenterol Hepatol 16, 361–375.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghiringhelli, F., and Fumet, J.D. (2019). Is there a place for immunotherapy for metastatic microsatellite stable colorectal cancer? Front Immunol 10, 1816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, L., Gao, Q.L., Zhou, X.M., Shi, C., Chen, G.Y., Song, Y.P., Yao, Y.J., Zhao, Y.M., Wen, X.Y., Liu, S.L., et al. (2020). Characterization of CD103+ CD8+ tissue-resident T cells in esophageal squamous cell carcinoma: may be tumor reactive and resurrected by anti-PD-1 blockade. Cancer Immunol Immunother 69, 1493–1504.

    Article  CAS  PubMed  Google Scholar 

  • Hermel, D.J., and Sigal, D. (2019). The emerging role of checkpoint inhibition in microsatellite stable colorectal cancer. J Pers Med 9, 5.

    Article  PubMed Central  Google Scholar 

  • Inderberg, E.M., Wälchli, S., Myhre, M.R., Trachsel, S., Almåsbak, H., Kvalheim, G., and Gaudernack, G. (2017). T cell therapy targeting a public neoantigen in microsatellite instable colon cancer reduces in vivo tumor growth. Oncoimmunology 6, e1302631.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito, H., Ando, T., Arioka, Y., Saito, K., and Seishima, M. (2015). Inhibition of indoleamine 2,3-dioxygenase activity enhances the anti-tumour effects of a Toll-like receptor 7 agonist in an established cancer model. Immunology 144, 621–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, T., Shi, T., Zhang, H., Hu, J., Song, Y., Wei, J., Ren, S., and Zhou, C. (2019). Tumor neoantigens: from basic research to clinical applications. J Hematol Oncol 12, 93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karasaki, T., Nagayama, K., Kawashima, M., Hiyama, N., Murayama, T., Kuwano, H., Nitadori, J., Anraku, M., Sato, M., Miyai, M., et al. (2016). Identification of individual cancer-specific somatic mutations for neoantigen-based immunotherapy of lung cancer. J Thorac Oncol 11, 324–333.

    Article  PubMed  Google Scholar 

  • Le, D.T., Uram, J.N., Wang, H., Bartlett, B.R., Kemberling, H., Eyring, A. D., Skora, A.D., Luber, B.S., Azad, N.S., Laheru, D., et al. (2015). PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372, 2509–2520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le, D.T., Durham, J.N., Smith, K.N., Wang, H., Bartlett, B.R., Aulakh, L. K., Lu, S., Kemberling, H., Wilt, C., Luber, B.S., et al. (2017). Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao, Y., Ma, Z., Zhang, Y., Li, D., Lv, D., Chen, Z., Li, P., Ai-Dherasi, A., Zheng, F., Tian, J., et al. (2019). Targeted deep sequencing from multiple sources demonstrates increased NOTCH1 alterations in lung cancer patient plasma. Cancer Med 8, 5673–5686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llosa, N.J., Cruise, M., Tam, A., Wicks, E.C., Hechenbleikner, E.M., Taube, J.M., Blosser, R.L., Fan, H., Wang, H., Luber, B.S., et al. (2015). The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov 5, 43–51.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Y.C., Yao, X., Crystal, J.S., Li, Y.F., El-Gamil, M., Gross, C., Davis, L., Dudley, M.E., Yang, J.C., Samuels, Y., et al. (2014). Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clin Cancer Res 20, 3401–3410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malekzadeh, P., Pasetto, A., Robbins, P.F., Parkhurst, M.R., Paria, B.C., Jia, L., Gartner, J.J., Hill, V., Yu, Z., Restifo, N.P., et al. (2019). Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancers. J Clin Invest 129, 1109–1114.

    Article  PubMed  Google Scholar 

  • Meng, Q., Wu, Y., Sui, X., Meng, J., Wang, T., Lin, Y., Wang, Z., Zhou, X., Qi, Y., Du, J., et al. (2020). POTN: a human leukocyte antigen-A2 immunogenic peptides screening model and its applications in tumor antigens prediction. Front Immunol 11, 02193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mennonna, D., Maccalli, C., Romano, M.C., Garavaglia, C., Capocefalo, F., Bordoni, R., Severgnini, M., De Bellis, G., Sidney, J., Sette, A., et al. (2017). T cell neoepitope discovery in colorectal cancer by high throughput profiling of somatic mutations in expressed genes. Gut 66, 454–463.

    Article  CAS  PubMed  Google Scholar 

  • Mlecnik, B., Bindea, G., Angell, H.K., Maby, P., Angelova, M., Tougeron, D., Church, S.E., Lafontaine, L., Fischer, M., Fredriksen, T., et al. (2016). Integrative analyses ofcolorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity 44, 698–711.

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa, Y., Watari, E., Shimizu, M., and Takahashi, H. (2011). One-step simple assay to determine antigen-specific cytotoxic activities by single-color flow cytometry. Biomed Res 32, 159–166.

    Article  CAS  PubMed  Google Scholar 

  • Nelde, A., Walz, J.S., Kowalewski, D.J., Schuster, H., Wolz, O.O., Peper, J. K., Cardona Gloria, Y., Langerak, A.W., Muggen, A.F., Claus, R., et al. (2017). HLA class I-restricted MYD88 L265P-derived peptides as specific targets for lymphoma immunotherapy. Oncoimmunology 6, e1219825.

    Article  PubMed  Google Scholar 

  • Nijman, H.W., Houbiers, J.G.A., Vierboom, M.P.M., van der Burg, S.H., Drijfhout, J.W., D’Amaro, J., Kenemans, P., Melief, C.J.M., and Kast, W.M. (1993). Identification of peptide sequences that potentially trigger HLA-A2.1-restricted cytotoxic T lymphocytes. Eur J Immunol 23, 1215–1219.

    Article  CAS  PubMed  Google Scholar 

  • Ott, P.A., Hu-Lieskovan, S., Chmielowski, B., Govindan, R., Naing, A., Bhardwaj, N., Margolin, K., Awad, M.M., Hellmann, M.D., Lin, J.J., et al. (2020). A phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell 183, 347–362.e24.

    Article  CAS  PubMed  Google Scholar 

  • Overman, M.J., McDermott, R., Leach, J.L., Lonardi, S., Lenz, H.J., Morse, M.A., Desai, J., Hill, A., Axelson, M., Moss, R.A., et al. (2017). Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol 18, 1182–1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, M., Mo, Y., Wang, Y., Wu, P., Zhang, Y., Xiong, F., Guo, C., Wu, X., Li, Y., Li, X., et al. (2019). Neoantigen vaccine: an emerging tumor immunotherapy. Mol Cancer 18, 128.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenberg, S.A., and Restifo, N.P. (2015). Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, R., Liu, J., Zou, Z., Qi, Y., Zhai, M., Zhai, W., and Gao, Y. (2013). The immunogenicity of a novel cytotoxic T lymphocyte epitope from tumor antigen PL2L60 could be enhanced by 4-chlorophenylalanine substitution at position 1. Cancer Immunol Immunother 62, 1723–1732.

    Article  CAS  PubMed  Google Scholar 

  • Siegel, R.L., Miller, K.D., and Jemal, A. (2020). Cancer statistics, 2020. CA Cancer J Clin 70, 7–30.

    Article  PubMed  Google Scholar 

  • Tourdot, S., Scardino, A., Saloustrou, E., Gross, D., Pascolo, S., Cordopatis, P., Lemonnier, F., and Kosmatopoulos, K. (2000). A general strategy to enhance immunogenicity oflow-affinity HLA-A2.1-associated peptides: implication in the identification of cryptic tumor epitopes. Eur J Immunol 30, 3411–3421.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y.H., Gao, Y.F., He, Y.J., Shi, R.R., Zhai, M.X., Wu, Z.Y., Sun, M., Zhai, W.J., Chen, X., and Qi, Y.M. (2012). A novel cytotoxic T lymphocyte epitope analogue with enhanced activity derived from cyclooxygenase-2. Scand J Immunol 76, 278–285.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y., Zhai, W., Zhou, X., Wang, Z., Lin, Y., Ran, L., Qi, Y., and Gao, Y. (2018). HLA-A2-restricted epitopes identified from MTA1 could elicit antigen-specific cytotoxic T lymphocyte response. J Immunol Res 2018, 1–11.

    CAS  Google Scholar 

  • Xie, Y.H., Chen, Y.X., and Fang, J.Y. (2020). Comprehensive review of targeted therapy for colorectal cancer Sig Transduct Target Ther 5, 22

    Article  CAS  Google Scholar 

  • Xu, Z., Ramishetti, S., Tseng, Y.C., Guo, S., Wang, Y., and Huang, L. (2013). Multifunctional nanoparticles co-delivering Trp2 peptide and CpG adjuvant induce potent cytotoxic T-lymphocyte response against melanoma and its lung metastasis. J Control Release 172, 259–265.

    Article  CAS  PubMed  Google Scholar 

  • Yan, Y., Kumar, A.B., Finnes, H., Markovic, S.N., Park, S., Dronca, R.S., and Dong, H. (2018). Combining immune checkpoint inhibitors with conventional cancer therapy. Front Immunol 9, 1739.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, Y., Yu, Y., and Lu, S. (2020). Effectiveness of PD-1/PD-L1 inhibitors in the treatment of lung cancer: brightness and challenge. Sci China Life Sci 63, 1499–1514.

    Article  CAS  PubMed  Google Scholar 

  • Yarchoan, M., Johnson Iii, B.A., Lutz, E.R., Laheru, D.A., and Jaffee, E.M. (2017). Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 17, 209–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, G., Sprengers, D., Boor, P.P.C., Doukas, M., Schutz, H., Mancham, S., Pedroza-Gonzalez, A., Polak, W.G., de Jonge, J., Gaspersz, M., et al. (2017). Antibodies against immune checkpoint molecules restore functions of tumor-infiltrating T cells in hepatocellular carcinomas. Gastroenterology 153, 1107–1119.e10.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, B., Chen, Z., Cheng, X., Lin, Z., Guo, J., Jia, Z., Zou, L., Wang, Z., Hu, Y., Wang, D., et al. (2003). Identification of HLA-A*0201-restricted cytotoxic T lymphocyte epitope from TRAG-3 antigen. Clin Cancer Res 9, 1850–1857.

    CAS  PubMed  Google Scholar 

  • Zhai, W., Zhou, X., Zhai, M., Li, W., Ran, Y., Sun, Y., Du, J., Zhao, W., Xing, L., Qi, Y., et al. (2021). Blocking of the PD-1/PD-L1 interaction by a novel cyclic peptide inhibitor for cancer immunotherapy. Sci China Life Sci 64, 548–562.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U20A20369, 81822043, and 81601448), and the Foundation of Henan Province (19A180007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yahong Wu or Yanfeng Gao.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, R., Li, Y., Ran, L. et al. Screening and identification of HLA-A2-restricted neoepitopes for immunotherapy of non-microsatellite instability-high colorectal cancer. Sci. China Life Sci. 65, 572–587 (2022). https://doi.org/10.1007/s11427-021-1944-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-1944-5

Keywords

Navigation