Skip to main content
Log in

A UV-B-responsive glycosyltransferase, OsUGT706C2, modulates flavonoid metabolism in rice

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Although natural variations in rice flavonoids exist, and biochemical characterization of a few flavonoid glycosyltransferases has been reported, few studies focused on natural variations in tricin-lignan-glycosides and their underlying genetic basis. In this study, we carried out metabolic profiling of tricin-lignan-glycosides and identified a major quantitative gene annotated as a UDP-dependent glycosyltransferase OsUGT706C2 by metabolite-based genome-wide association analysis. The putative flavonoid glycosyltransferase OsUGT706C2 was characterized as a flavonoid 7-O-glycosyltransferas in vitro and in vivo. Although the in vitro enzyme activity of OsUGT706C2 was similar to that of OsUGT706D1, the expression pattern and induced expression profile of OsUGT706C2 were very different from those of OsUGT706D1. Besides, OsUGT706C2 was specifically induced by UV-B. Constitutive expression of OsUGT706C2 in rice may modulate phenylpropanoid metabolism at both the transcript and metabolite levels. Furthermore, overexpressing OsUGT706C2 can enhance UV-B tolerance by promoting ROS scavenging in rice. Our findings might make it possible to use the glycosyltransferase OsUGT706C2 for crop improvement with respect to UV-B adaptation and/or flavonoid accumulation, which may contribute to stable yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agati, G., Biricolti, S., Guidi, L., Ferrini, F., Fini, A., and Tattini, M. (2011). The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. J Plant Physiol 168, 204–212.

    Article  CAS  Google Scholar 

  • Agati, G., Stefano, G., Biricolti, S., and Tattini, M. (2009). Mesophyll distribution of ‘antioxidant’ flavonoid glycosides in Ligustrum vulgare leaves under contrasting sunlight irradiance. Ann Bot 104, 853–861.

    Article  CAS  Google Scholar 

  • Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., and Vivanco, J.M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57, 233–266.

    Article  CAS  Google Scholar 

  • Besseau, S., Hoffmann, L., Geoffroy, P., Lapierre, C., Pollet, B., and Legrand, M. (2007). Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell 19, 148–162.

    Article  CAS  Google Scholar 

  • Bieza, K., and Lois, R. (2001). An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiol 126, 1105–1115.

    Article  CAS  Google Scholar 

  • Blount, J.W., Korth, K.L., Masoud, S.A., Rasmussen, S., Lamb, C., and Dixon, R.A. (2000). Altering expression of cinnamic acid 4-hydroxylase in transgenic plants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway. Plant Physiol 122, 107–116.

    Article  CAS  Google Scholar 

  • Bottcher, A., Cesarino, I., Brombini dos Santos, A., Vicentini, R., Mayer, J.L.S., Vanholme, R., Morreel, K., Goeminne, G., Moura, J.C.M.S., Nobile, P.M., et al. (2013). Lignification in sugarcane: biochemical characterization, gene discovery, and expression analysis in two genotypes contrasting for lignin content. Plant Physiol 163, 1539–1557.

    Article  CAS  Google Scholar 

  • Bouaziz, M., Veitch, N.C., Grayer, R.J., Simmonds, M.S.J., and Damak, M. (2002). Flavonolignans from Hyparrhenia hirta. Phytochemistry 60, 515–520.

    Article  CAS  Google Scholar 

  • Bowles, D., Lim, E.K., Poppenberger, B., and Vaistij, F.E. (2006). Glycosyltransferases of lipophilic small molecules. Annu Rev Plant Biol 57, 567–597.

    Article  CAS  Google Scholar 

  • Cartwright, A.M., Lim, E.K., Kleanthous, C., and Bowles, D.J. (2008). A kinetic analysis of regiospecific glucosylation by two glycosyltransferases of Arabidopsis thaliana. J Biol Chem 283, 15724–15731.

    Article  CAS  Google Scholar 

  • Casati, P., and Walbot, V. (2003). Gene expression profiling in response to ultraviolet radiation in maize genotypes with varying flavonoid content. Plant Physiol 132, 1739–1754.

    Article  CAS  Google Scholar 

  • Chen, W., Gao, Y., Xie, W., Gong, L., Lu, K., Wang, W., Li, Y., Liu, X., Zhang, H., Dong, H., et al. (2014). Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat Genet 46, 714–721.

    Article  CAS  Google Scholar 

  • Chen, W., Gong, L., Guo, Z., Wang, W., Zhang, H., Liu, X., Yu, S., Xiong, L., and Luo, J. (2013). A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol Plant 6, 1769–1780.

    Article  CAS  Google Scholar 

  • Dixon, R.A., and Paiva, N.L. (1995). Stress-induced phenylpropanoid metabolism. Plant Cell 7, 1085–1097.

    Article  CAS  Google Scholar 

  • Duarte-Almeida, J.M., Negri, G., Salatino, A., de Carvalho, J.E., and Lajolo, F.M. (2007). Antiproliferative and antioxidant activities of a tricin acylated glycoside from sugarcane (Saccharum officinarum) juice. Phytochemistry 68, 1165–1171.

    Article  CAS  Google Scholar 

  • Feng, H., An, L., Chen, T., Qiang, W., Xu, S., Zhang, M., Wang, X., and Cheng, G. (2003). The effect of enhanced ultraviolet-B radiation on growth, photosynthesis and stable carbon isotope composition (δ13C) of two soybean cultivars (Glycine max) under field conditions. Environ Exp Bot 49, 1–8.

    Article  CAS  Google Scholar 

  • Gibson, G. (2010). Hints of hidden heritability in GWAS. Nat Genet 42, 558–560.

    Article  CAS  Google Scholar 

  • Gitz, D.C., Liu-Gitz, L., McClure, J.W., and Huerta, A.J. (2004). Effects of a PAL inhibitor on phenolic accumulation and UV-B tolerance in Spirodela intermedia (Koch.). J Exp Bot 55, 919–927.

    Article  CAS  Google Scholar 

  • Hartmann, U., Sagasser, M., Mehrtens, F., Stracke, R., and Weisshaar, B. (2005). Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol Biol 57, 155–171.

    Article  CAS  Google Scholar 

  • Hartmann, U., Valentine, W.J., Christie, J.M., Hays, J., Jenkins, G.I., and Weisshaar, B. (1998). Identification of UV/blue light-response elements in the Arabidopsis thaliana chalcone synthase promoter using a homologous protoplast transient expression system. Plant Mol Biol 36, 741–754.

    Article  CAS  Google Scholar 

  • Hideg, É., Jansen, M.A.K., and Strid, Å. (2013). UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci 18, 107–115.

    Article  CAS  Google Scholar 

  • Huang, X., Wei, X., Sang, T., Zhao, Q., Feng, Q., Zhao, Y., Li, C., Zhu, C., Lu, T., Zhang, Z., et al. (2010). Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42, 961–967.

    Article  CAS  Google Scholar 

  • Jansen, M.A.K., Gaba, V., and Greenberg, B.M. (1998). Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci 3, 131–135.

    Article  Google Scholar 

  • Jiang, L., Liu, X., Xiong, G., Liu, H., Chen, F., Wang, L., Meng, X., Liu, G., Yu, H., Yuan, Y., et al. (2013). DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504, 401–405.

    Article  CAS  Google Scholar 

  • Jiang, Z., Zheng, Y., Qiu, R., Yang, Y., Xu, M., Ye, Y., and Xu, M. (2015). Short UV-B exposure stimulated enzymatic and nonenzymatic antioxidants and reduced oxidative stress of cold-stored mangoes. J Agric Food Chem 63, 10965–10972.

    Article  CAS  Google Scholar 

  • Kalbin, G., Hidema, J., Brosche, M., Kumagai, T., Bornman, J.F., and Strid, A. (2001). UV-B-induced DNA damage and expression of defence genes under UV-B stress: tissue-specific molecular marker analysis in leaves. Plant Cell Environ 24, 983–990.

    Article  CAS  Google Scholar 

  • Karimi, M., De Meyer, B., and Hilson, P. (2005). Modular cloning in plant cells. Trends Plant Sci 10, 103–105.

    Article  CAS  Google Scholar 

  • Kaspar, S., Matros, A., and Mock, H.P. (2010). Proteome and flavonoid analysis reveals distinct responses of epidermal tissue and whole leaves upon UV-B radiation of barley (Hordeum vulgare L.) seedlings. J Proteome Res 9, 2402–2411.

    Article  CAS  Google Scholar 

  • Koes, R.E., Quattrocchio, F., and Mol, J.N.M. (1994). The flavonoid biosynthetic pathway in plants: Function and evolution. Bioessays 16, 123–132.

    Article  CAS  Google Scholar 

  • Kramer, C.M., Prata, R.T.N., Willits, M.G., De Luca, V., Steffens, J.C., and Graser, G. (2003). Cloning and regiospecificity studies of two flavonoid glucosyltransferases from Allium cepa. Phytochemistry 64, 1069–1076.

    Article  CAS  Google Scholar 

  • Kumar, R.J.S., Ruby, R.J.S., Singh, S., Sonawane, P.D., Vishwakarma, R. K., and Khan, B.M. (2013). Functional characterization of a glucosyltransferase specific to flavonoid 7-O-glucosides from Withania somnifera. Plant Mol Biol Rep 31, 1100–1108.

    Article  CAS  Google Scholar 

  • Laakso, K., Sullivan, J.H., and Huttunen, S. (2000). The effects of UV-B radiation on epidermal anatomy in loblolly pine (Pinus taeda L.) and Scots pine (Pinus sylvestris L.). Plant Cell Environ 23, 461–472.

    Article  Google Scholar 

  • Lan, W., Lu, F., Regner, M., Zhu, Y., Rencoret, J., Ralph, S.A., Zakai, U.I., Morreel, K., Boerjan, W., and Ralph, J. (2015). Tricin, a flavonoid monomer in monocot lignification. Plant Physiol 167, 1284–1295.

    Article  CAS  Google Scholar 

  • Lan, W., Morreel, K., Lu, F., Rencoret, J., del Río, J.C., Voorend, W., Vermerris, W., Boerjan, W.A., and Ralph, J. (2016). Maize tricinoligolignol metabolites and their implications for monocot lignification. Plant Physiol 171, pp. 02012.2016.

    Google Scholar 

  • Lee, S.S., Baek, N.I., Baek, Y.S., Chung, D.K., Song, M.C., and Bang, M. H. (2015). New flavonolignan glycosides from the aerial parts of Zizania latifolia. Molecules 20, 5616–5624.

    Article  CAS  Google Scholar 

  • Leong, C.N.A., Tako, M., Hanashiro, I., and Tamaki, H. (2008). Antioxidant flavonoid glycosides from the leaves of Ficus pumila L. Food Chem 109, 415–420.

    Article  CAS  Google Scholar 

  • Lepiniec, L., Debeaujon, I., Routaboul, J.M., Baudry, A., Pourcel, L., Nesi, N., and Caboche, M. (2006). Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57, 405–430.

    Article  CAS  Google Scholar 

  • Li, M.X., Yeung, J.M.Y., Cherny, S.S., and Sham, P.C. (2012). Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet 131, 747–756.

    Article  CAS  Google Scholar 

  • Li, Y., Li, P., Wang, Y., Dong, R., Yu, H., and Hou, B. (2014). Genome-wide identification and phylogenetic analysis of Family-1 UDP glycosyltransferases in maize (Zea mays). Planta 239, 1265–1279.

    Article  CAS  Google Scholar 

  • Lippert, C., Listgarten, J., Liu, Y., Kadie, C.M., Davidson, R.I., and Heckerman, D. (2011). FaST linear mixed models for genome-wide association studies. Nat Methods 8, 833–835.

    Article  CAS  Google Scholar 

  • Lipphardt, S., Brettschneider, R., Kreuzaler, F., Schell, J., and Dangl, J.L. (1988). UV-inducible transient expression in parsley protoplasts identifies regulatory cis-elements of a chimeric Antirrhinum majus chalcone synthase gene. EMBO J 7, 4027–4033.

    Article  CAS  Google Scholar 

  • Liu, H., Yu, X., Li, K., Klejnot, J., Yang, H., Lisiero, D., and Lin, C. (2008). Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322, 1535–1539.

    Article  CAS  Google Scholar 

  • Lunkenbein, S., Coiner, H., de Vos, C.H.R., Schaart, J.G., Boone, M.J., Krens, F.A., Schwab, W., and Salentijn, E.M.J. (2006). Molecular characterization of a stable antisense chalcone synthase phenotype in strawberry (Fragaria×ananassa). J Agric Food Chem 54, 2145–2153.

    Article  CAS  Google Scholar 

  • Ma, D., Li, X., Guo, Y., Chu, J., Fang, S., Yan, C., Noel, J.P., and Liu, H. (2016). Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. Proc Natl Acad Sci USA 113, 224–229.

    Article  CAS  Google Scholar 

  • Mackenzie, P.I., Owens, I.S., Burchell, B., Bock, K.W., Bairoch, A., Belanger, A., Gigleux, S.F., Green, M., Hum, D.W., Iyanagi, T., et al. (1997). The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 7, 255–269.

    Article  CAS  Google Scholar 

  • Matsuba, Y., Sasaki, N., Tera, M., Okamura, M., Abe, Y., Okamoto, E., Nakamura, H., Funabashi, H., Takatsu, M., Saito, M., et al. (2010). A novel glucosylation reaction on anthocyanins catalyzed by acylglucose-dependent glucosyltransferase in the petals of carnation and delphinium. Plant Cell 22, 3374–3389.

    Article  CAS  Google Scholar 

  • Moheb, A., Grondin, M., Ibrahim, R.K., Roy, R., and Sarhan, F. (2013). Winter wheat hull (husk) is a valuable source for tricin, a potential selective cytotoxic agent. Food Chem 138, 931–937.

    Article  CAS  Google Scholar 

  • Moreira, M.R., Kanashiro, A., Kabeya, L.M., Polizello, A.C.M., Azzolini, A.E.C.S., Curti, C., Oliveira, C.A., T.-do Amaral, A., and Lucisano-Valim, Y.M. (2007). Neutrophil effector functions triggered by Fcgamma and/or complement receptors are dependent on B-ring hydroxylation pattern and physicochemical properties of flavonols. Life Sci 81, 317–326.

    Article  CAS  Google Scholar 

  • Nakano, H., Kawada, N., Yoshida, M., Ono, H., Iwaura, R., and Tonooka, T. (2011). Isolation and identification of flavonoids accumulated in proanthocyanidin-free barley. J Agric Food Chem 59, 9581–9587.

    Article  CAS  Google Scholar 

  • Nakatsuka, T., Sato, K., Takahashi, H., Yamamura, S., and Nishihara, M. (2008). Cloning and characterization of the UDP-glucose:anthocyanin 5-O-glucosyltransferase gene from blue-flowered gentian. J Exp Bot 59, 1241–1252.

    Article  CAS  Google Scholar 

  • Oyama, T., Yasui, Y., Sugie, S., Koketsu, M., Watanabe, K., and Tanaka, T. (2009). Dietary tricin suppresses inflammation-related colon carcinogenesis in male Crj: CD-1 mice. Cancer Prevent Res 2, 1031–1038.

    Article  CAS  Google Scholar 

  • Ožbolt, L., Kreft, S., Kreft, I., Germ, M., and Stibilj, V. (2008). Distribution of selenium and phenolics in buckwheat plants grown from seeds soaked in Se solution and under different levels of UV-B radiation. Food Chem 110, 691–696.

    Article  Google Scholar 

  • Peer, W.A., and Murphy, A.S. (2007). Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci 12, 556–563.

    Article  CAS  Google Scholar 

  • Peng, M., Shahzad, R., Gul, A., Subthain, H., Shen, S., Lei, L., Zheng, Z., Zhou, J., Lu, D., Wang, S., et al. (2017). Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV-tolerance. Nat Commun 8, 1975.

    Article  Google Scholar 

  • Peng, Q., and Zhou, Q. (2009). Antioxidant capacity of flavonoid in soybean seedlings under the joint actions of rare earth element La(III) and ultraviolet-B stress. Biol Trace Elem Res 127, 69–80.

    Article  CAS  Google Scholar 

  • Quadrana, L., Almeida, J., Asís, R., Duffy, T., Dominguez, P.G., Bermúdez, L., Conti, G., Corrêa da Silva, J.V., Peralta, I.E., Colot, V., et al. (2014). Natural occurring epialleles determine vitamin E accumulation in tomato fruits. Nat Commun 5, 3027.

    Article  CAS  Google Scholar 

  • Santelia, D., Henrichs, S., Vincenzetti, V., Sauer, M., Bigler, L., Klein, M., Bailly, A., Lee, Y., Friml, J., Geisler, M., et al. (2008). Flavonoids redirect PIN-mediated polar auxin fluxes during root gravitropic responses. J Biol Chem 283, 31218–31226.

    Article  CAS  Google Scholar 

  • Schulze-Lefert, P., Becker-André, M., Schulz, W., Hahlbrock, K., and Dangl, J.L. (1989). Functional architecture of the light-responsive chalcone synthase promoter from parsley. Plant Cell 1, 707.

    CAS  Google Scholar 

  • Scossa, F., Brotman, Y., de Abreue Lima, F., Willmitzer, L., Nikoloski, Z., Tohge, T., and Fernie, A.R. (2016). Genomics-based strategies for the use of natural variation in the improvement of crop metabolism. Plant Sci 242, 47–64.

    Article  CAS  Google Scholar 

  • Song, S.Y., Chen, Y., Chen, J., Dai, X.Y., and Zhang, W.H. (2011). Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta 234, 331–345.

    Article  CAS  Google Scholar 

  • Stracke, R., Favory, J.J., Gruber, H., Bartelniewoehner, L., Bartels, S., Binkert, M., Funk, M., Weisshaar, B., and Ulm, R. (2010). The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. Plant Cell Environ 33, 88–103.

    CAS  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731–2739.

    Article  CAS  Google Scholar 

  • Taylor, L.P., and Grotewold, E. (2005). Flavonoids as developmental regulators. Curr Opin Plant Biol 8, 317–323.

    Article  CAS  Google Scholar 

  • Tevini, M., and Teramura, A.H. (1989). UV-B effects on terrestrial plants. Photochem Photobiol 50, 479–487.

    Article  CAS  Google Scholar 

  • Tohge, T., Nishiyama, Y., Hirai, M.Y., Yano, M., Nakajima, J., Awazuhara, M., Inoue, E., Takahashi, H., Goodenowe, D.B., Kitayama, M., et al. (2005). Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42, 218–235.

    Article  CAS  Google Scholar 

  • Tohge, T., Wendenburg, R., Ishihara, H., Nakabayashi, R., Watanabe, M., Sulpice, R., Hoefgen, R., Takayama, H., Saito, K., Stitt, M., et al. (2016). Characterization of a recently evolved flavonol-phenylacyltransferase gene provides signatures of natural light selection in Brassicaceae. Nat Commun 7, 12399.

    Article  CAS  Google Scholar 

  • Treutter, D. (2005). Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol 7, 581–591.

    Article  CAS  Google Scholar 

  • Tsurunaga, Y., Takahashi, T., Katsube, T., Kudo, A., Kuramitsu, O., Ishiwata, M., and Matsumoto, S. (2013). Effects of UV-B irradiation on the levels of anthocyanin, rutin and radical scavenging activity of buckwheat sprouts. Food Chem 141, 552–556.

    Article  CAS  Google Scholar 

  • Ulm, R., Baumann, A., Oravecz, A., Mate, Z., Adam, E., Oakeley, E.J., Schafer, E., and Nagy, F. (2004). Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proc Natl Acad Sci USA 101, 1397–1402.

    Article  CAS  Google Scholar 

  • Verschoyle, R.D., Greaves, P., Cai, H., Borkhardt, A., Broggini, M., D’Incalci, M., Riccio, E., Doppalapudi, R., Kapetanovic, I.M., Steward, W.P., et al. (2006). Preliminary safety evaluation of the putative cancer chemopreventive agent tricin, a naturally occurring flavone. Cancer Chemother Pharmacol 57, 1–6.

    Article  CAS  Google Scholar 

  • Vogel, J.J., Thompson, D.J., and Phillips, P.H. (1962). Studies on the anticariogenic activity of oat hulls. J Dent Res 41, 707–712.

    Article  CAS  Google Scholar 

  • Wang, Y., Yu, G., Li, K., Wu, M., Ma, J., Xu, J., and Chen, G. (2015). Responses of photosynthetic properties and antioxidant enzymes in high-yield rice flag leaves to supplemental UV-B radiation during senescence stage. Environ Sci Pollut Res 22, 4695–4705.

    Article  CAS  Google Scholar 

  • Werner, S.R., and Morgan, J.A. (2010). Controlling selectivity and enhancing yield of flavonoid glycosides in recombinant yeast. Bioprocess Biosyst Eng 33, 863–871.

    Article  CAS  Google Scholar 

  • Winkel-Shirley, B. (2001). Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126, 485–493.

    Article  CAS  Google Scholar 

  • Xiao, J., Cao, H., Wang, Y., Zhao, J., and Wei, X. (2009). Glycosylation of dietary flavonoids decreases the affinities for plasma protein. J Agric Food Chem 57, 6642–6648.

    Article  CAS  Google Scholar 

  • Xue, W., Xing, Y., Weng, X., Zhao, Y., Tang, W., Wang, L., Zhou, H., Yu, S., Xu, C., Li, X., et al. (2008). Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40, 761–767.

    Article  CAS  Google Scholar 

  • Yin, Q., Shen, G., Chang, Z., Tang, Y., Gao, H., and Pang, Y. (2017). Involvement of three putative glucosyltransferases from the UGT72 family in flavonol glucoside/rhamnoside biosynthesis in Lotus japonicus seeds. J Exp Bot 68, 597–612.

    CAS  Google Scholar 

  • Yonekura-Sakakibara, K., Fukushima, A., Nakabayashi, R., Hanada, K., Matsuda, F., Sugawara, S., Inoue, E., Kuromori, T., Ito, T., Shinozaki, K., et al. (2012). Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in Arabidopsis thaliana. Plant J 69, 154–167.

    Article  CAS  Google Scholar 

  • Yonekura-Sakakibara, K., and Hanada, K. (2011). An evolutionary view of functional diversity in family 1 glycosyltransferases. Plant J 66, 182–193.

    Article  CAS  Google Scholar 

  • Yonekura-Sakakibara, K., Nakabayashi, R., Sugawara, S., Tohge, T., Ito, T., Koyanagi, M., Kitajima, M., Takayama, H., and Saito, K. (2014). A flavonoid 3-O-glucoside:2″-O-glucosyltransferase responsible for terminal modification of pollen-specific flavonols in Arabidopsis thaliana. Plant J 79, 769–782.

    Article  CAS  Google Scholar 

  • Yonekura-Sakakibara, K., Tohge, T., Matsuda, F., Nakabayashi, R., Takayama, H., Niida, R., Watanabe-Takahashi, A., Inoue, E., and Saito, K. (2008). Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis. Plant Cell 20, 2160–2176.

    Article  CAS  Google Scholar 

  • Yonekura-Sakakibara, K., Tohge, T., Niida, R., and Saito, K. (2007). Identification of a flavonol 7-O-rhamnosyltransferase gene determining flavonoid pattern in Arabidopsis by transcriptome coexpression analysis and reverse genetics. J Biol Chem 282, 14932–14941.

    Article  CAS  Google Scholar 

  • Zhang, Y., Butelli, E., De Stefano, R., Schoonbeek, H., Magusin, A., Pagliarani, C., Wellner, N., Hill, L., Orzaez, D., Granell, A., et al. (2013). Anthocyanins double the shelf life of tomatoes by delaying overripening and reducing susceptibility to gray mold. Curr Biol 23, 1094–1100.

    Article  CAS  Google Scholar 

  • Zhao, K., Aranzana, M.J., Kim, S., Lister, C., Shindo, C., Tang, C., Toomajian, C., Zheng, H., Dean, C., Marjoram, P., et al. (2007). An Arabidopsis example of association mapping in structured samples. PLoS Genet 3, e4.

    Article  Google Scholar 

  • Zu, Y., Pang, H.H., Yu, J.H., Li, D.W., Wei, X.X., Gao, Y.X., and Tong, L. (2010). Responses in the morphology, physiology and biochemistry of Taxus chinensis var. mairei grown under supplementary UV-B radiation. J Photochem Photobiol B Biol 98, 152–158.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Foundation for the Major Science and Technology Program of Ningxia Hui Autonomous Region (2016BZ06), the State Key Program of National Natural Science Foundation of China (31530052), the National Science Fund for Distinguished Young Scholars (31625021), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (31821005), and the Hainan University Startup Fund (KYQD(ZR)1866) to JL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Luo.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Guo, H., Huang, J. et al. A UV-B-responsive glycosyltransferase, OsUGT706C2, modulates flavonoid metabolism in rice. Sci. China Life Sci. 63, 1037–1052 (2020). https://doi.org/10.1007/s11427-019-1604-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-1604-3

Keywords

Navigation