Skip to main content
Log in

Active copper structures in ZnO-Cu interfacial catalysis: CO2 hydrogenation to methanol and reverse water-gas shift reactions

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Cu-ZnO-based catalysts are widely used to catalyze the CO2 hydrogenation to methanol and reverse water-gas shift (RWGS) reactions. Herein, via a combined experimental and theoretical calculation study of various Cu nanocrystals (NCs) with well-defined Cu facets and corresponding ZnO/Cu NC inverse catalysts, we demonstrate the Cu{110} facets as the most active facet for ZnO-Cu interfacial catalysis in the CO2 hydrogenation to methanol with an apparent activation energy as low as 25.3±3 kJ mol−1 and the Cu{100} facets as the most active facet for both ZnO-Cu interfacial catalysis and Cu catalysis in the RWGS reaction. Although the ZnO-Cu interface is more active in catalyzing the RWGS reaction than the Cu surface, the RWGS reaction occurs mainly on the bare Cu surface of ZnO/Cu inverse catalysts under the CO2 hydrogenation to methanol instead of that at the ZnO-Cu interface. This fundamental understanding will greatly help to fabricate efficient Cu-ZnO-based catalysts for the CO2 hydrogenation to methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davis SJ, Caldeira K, Matthews HD. Science, 2010, 329: 1330–1333

    Article  PubMed  ADS  CAS  Google Scholar 

  2. Zhong J, Yang X, Wu Z, Liang B, Huang Y, Zhang T. Chem Soc Rev, 2020, 49: 1385–1413

    Article  PubMed  ADS  CAS  Google Scholar 

  3. Jiang X, Nie X, Guo X, Song C, Chen JG. Chem Rev, 2020, 120: 7984–8034

    Article  PubMed  CAS  Google Scholar 

  4. Behrens M. Angew Chem Int Ed, 2014, 53: 12022–12024

    Article  CAS  Google Scholar 

  5. Behrens M. Angew Chem Int Ed, 2016, 55: 14906–14908

    Article  CAS  Google Scholar 

  6. Behrens M, Studt F, Kasatkin I, Kühl S, Hävecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep BL, Tovar M, Fischer RW, Nørskov JK, Schlögl R. Science, 2012, 336: 893–897

    Article  PubMed  ADS  CAS  Google Scholar 

  7. Graciani J, Mudiyanselage K, Xu F, Baber AE, Evans J, Senanayake SD, Stacchiola DJ, Liu P, Hrbek J, Sanz JF, Rodriguez JA. Science, 2014, 345: 546–550

    Article  PubMed  ADS  CAS  Google Scholar 

  8. Kuld S, Conradsen C, Moses PG, Chorkendorff I, Sehested J. Angew Chem Int Ed, 2014, 53: 5941–5945

    Article  CAS  Google Scholar 

  9. Kuld S, Thorhauge M, Falsig H, Elkjaer CF, Helveg S, Chorkendorff I, Sehested J. Science, 2016, 352: 969–974

    Article  PubMed  ADS  CAS  Google Scholar 

  10. Kattel S, Ramírez PJ, Chen JG, Rodriguez JA, Liu P. Science, 2017, 355: 1296–1299

    Article  PubMed  ADS  CAS  Google Scholar 

  11. Nakamura J, Fujitani T, Kuld S, Helveg S, Chorkendorff I, Sehested J. Science, 2017, 357: eaan8074

    Article  PubMed  Google Scholar 

  12. Fujitani T, Nakamura I, Uchijima T, Nakamura J. Surf Sci, 1997, 383: 285–298

    Article  ADS  CAS  Google Scholar 

  13. Beck A, Zabilskiy M, Newton MA, Safonova O, Willinger MG, van Bokhoven JA. Nat Catal, 2021, 4: 488–497

    Article  CAS  Google Scholar 

  14. Yoshihara J, Campbell CT. J Catal, 1996, 161: 776–782

    Article  CAS  Google Scholar 

  15. Nakamura I, Fujitani T, Uchijima T, Nakamura J. J Vacuum Sci Tech A-Vacuum Surfs Films, 1996, 14: 1464–1468

    Article  ADS  CAS  Google Scholar 

  16. Palomino RM, Ramírez PJ, Liu Z, Hamlyn R, Waluyo I, Mahapatra M, Orozco I, Hunt A, Simonovis JP, Senanayake SD, Rodriguez JA. J Phys Chem B, 2018, 122: 794–800

    Article  PubMed  CAS  Google Scholar 

  17. Nakamura I, Fujitani T, Uchijima T, Nakamura J. Surf Sci, 1998, 400: 387–400

    Article  ADS  CAS  Google Scholar 

  18. Somorjai GA, Frei H, Park JY. J Am Chem Soc, 2009, 131: 16589–16605

    Article  PubMed  CAS  Google Scholar 

  19. Zhou K, Li Y. Angew Chem Int Ed, 2012, 51: 602–613

    Article  CAS  Google Scholar 

  20. Huang W. Acc Chem Res, 2016, 49: 520–527

    Article  PubMed  CAS  Google Scholar 

  21. Chen S, Xiong F, Huang W. Surf Sci Rep, 2019, 74: 100471

    Article  CAS  Google Scholar 

  22. Zhang Z, You R, Huang W. Chin J Chem, 2022, 40: 846–855

    Article  CAS  Google Scholar 

  23. Huang W. Acc Mater Res, 2023, 4: 373–384

    Article  CAS  Google Scholar 

  24. Bao H, Zhang W, Hua Q, Jiang Z, Yang J, Huang W. Angew Chem Int Ed, 2011, 50: 12294–12298

    Article  CAS  Google Scholar 

  25. Hua Q, Cao T, Gu XK, Lu J, Jiang Z, Pan X, Luo L, Li WX, Huang W. Angew Chem Int Ed, 2014, 53: 4856–4861

    Article  CAS  Google Scholar 

  26. Zhang Z, Wang SS, Song R, Cao T, Luo L, Chen X, Gao Y, Lu J, Li WX, Huang W. Nat Commun, 2017, 8: 488

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  27. Zhang Z, Wu H, Yu Z, Song R, Qian K, Chen X, Tian J, Zhang W, Huang W. Angew Chem Int Ed, 2019, 58: 4276–4280

    Article  CAS  Google Scholar 

  28. Wan L, Zhou Q, Wang X, Wood TE, Wang L, Duchesne PN, Guo J, Yan X, Xia M, Li YF, Ali FM, Ulmer U, Jia J, Li T, Sun W, Ozin GA. Nat Catal, 2019, 2: 889–898

    Article  CAS  Google Scholar 

  29. Zhang Z, Chen X, Kang J, Yu Z, Tian J, Gong Z, Jia A, You R, Qian K, He S, Teng B, Cui Y, Wang Y, Zhang W, Huang W. Nat Commun, 2021, 12: 4331

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  30. Xiong W, Gu XK, Zhang Z, Chai P, Zang Y, Yu Z, Li D, Zhang H, Liu Z, Huang W. Nat Commun, 2021, 12: 5921

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  31. Kordus D, Jelic J, Luna ML, Divins NJ, Timoshenko J, Chee SW, Rettenmaier C, Kröhnert J, Kühl S, Trunschke A, Schlögl R, Studt F, Roldan Cuenya B. J Am Chem Soc, 2023, 145: 3016–3030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Wu C, Lin L, Liu J, Zhang J, Zhang F, Zhou T, Rui N, Yao S, Deng Y, Yang F, Xu W, Luo J, Zhao Y, Yan B, Wen XD, Rodriguez JA, Ma D. Nat Commun, 2020, 11: 5767

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  33. Chen S, Cao T, Gao Y, Li D, Xiong F, Huang W. J Phys Chem C, 2016, 120: 21472–21485

    Article  CAS  Google Scholar 

  34. Wang Y, Kattel S, Gao W, Li K, Liu P, Chen JG, Wang H. Nat Commun, 2019, 10: 1166

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  35. Fehr SM, Krossing I. ChemCatChem, 2020, 12: 2622–2629

    Article  CAS  Google Scholar 

  36. Zhu Y, Zheng J, Ye J, Cui Y, Koh K, Kovarik L, Camaioni DM, Fulton JL, Truhlar DG, Neurock M, Cramer CJ, Gutiérrez OY, Lercher JA. Nat Commun, 2020, 11: 5849

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  37. Yu J, Yang M, Zhang J, Ge Q, Zimina A, Pruessmann T, Zheng L, Grunwaldt JD, Sun J. ACS Catal, 2020, 10: 14694–14706

    Article  CAS  Google Scholar 

  38. Yu X, Zhang Z, Yang C, Bebensee F, Heissler S, Nefedov A, Tang M, Ge Q, Chen L, Kay BD, Dohnálek Z, Wang Y, Wöll C. J Phys Chem C, 2016, 120: 12626–12636

    Article  CAS  Google Scholar 

  39. Yang R, Fu Y, Zhang Y, Tsubaki N. J Catal, 2004, 228: 23–35

    Article  CAS  Google Scholar 

  40. Kattel S, Yan B, Yang Y, Chen JG, Liu P. J Am Chem Soc, 2016, 138: 12440–12450

    Article  PubMed  CAS  Google Scholar 

  41. Tabakova T, Boccuzzi F, Manzoli M, Andreeva D. Appl Catal A-Gen, 2003, 252: 385–397

    Article  CAS  Google Scholar 

  42. Millar GJ, Rochester CH, Bailey S, Waugh KC. Faraday Trans, 1993, 89: 1109–1115

    Article  CAS  Google Scholar 

  43. Burch R, Golunski SE, Spencer MS. Faraday Trans, 1990, 86: 2683–2691

    Article  Google Scholar 

  44. Genger T, Hinrichsen O, Muhler M. Catal Lett, 1999, 59: 137–141

    Article  CAS  Google Scholar 

  45. Schittkowski J, Buesen D, Toelle K, Muhler M. Catal Lett, 2016, 146: 1011–1017

    Article  CAS  Google Scholar 

  46. Orozco I, Huang E, Mahapatra M, Kang J, Shi R, Nemšák S, Tong X, Senanayake SD, Liu P, Rodríguez JA. J Phys Chem C, 2021, 125: 6673–6683

    Article  CAS  Google Scholar 

  47. Amann P, Klötzer B, Degerman D, Köpfle N, Götsch T, Lömker P, Rameshan C, Ploner K, Bikaljevic D, Wang HY, Soldemo M, Shipilin M, Goodwin CM, Gladh J, Stenlid JH, Börner M, Schlueter C, Nilsson A. Science, 2022, 376: 603–608

    Article  PubMed  ADS  CAS  Google Scholar 

  48. Liu L, Su X, Zhang H, Gao N, Xue F, Ma Y, Jiang Z, Fang T. Appl Surf Sci, 2020, 528: 146900

    Article  CAS  Google Scholar 

  49. Sabet-Sarvestani H, Izadyar M, Eshghi H, Noroozi-Shad N. Carbon Dioxide Utilization to Sustainable Energy and Fuels, Springer International Publishing, Cham, 2022, pp. 153–220

    Book  Google Scholar 

  50. Kattel S, Liu P, Chen JG. J Am Chem Soc, 2017, 139: 9739–9754

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2022YFA1504601, 2021YFA1502804). the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0450102), the National Natural Science Foundation of China (91945301, 92145302, U1930203 and 22011530114), the Fundamental Research Funds for the Central Universities (20720220008) and the Changjiang Scholars Program of the Ministry of Education of China. The authors thank the Hefei Advanced Computing Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongfang Wu, Wenhua Zhang or Weixin Huang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2023_1802_MOESM1_ESM.pdf

Active Copper Structures in ZnO-Cu Interfacial Catalysis: CO2 Hydrogenation to Methanol and Reverse Water-Gas Shift Reactions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, W., Wu, Z., Chen, X. et al. Active copper structures in ZnO-Cu interfacial catalysis: CO2 hydrogenation to methanol and reverse water-gas shift reactions. Sci. China Chem. 67, 715–723 (2024). https://doi.org/10.1007/s11426-023-1802-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1802-7

Navigation