Skip to main content

Theoretical Approaches to CO2 Transformations

  • Chapter
  • First Online:
Carbon Dioxide Utilization to Sustainable Energy and Fuels

Abstract

Nowadays, the issue of CO2 conversion becomes an urgent necessity for human civilization, which any ignorant will be caused irreparable damage to the future of human life. Thus, all researchers in the CO2 utilization field have been employed their facilities to overcome the CO2 issue. In the past decade, computational chemical modeling was mainly used to describe the observed results of a carried out reaction. Nowadays, regarding the rapid evolution of computational software and hardware, computational chemical sciences have been converted to powerful tools in the description of the obtained results, studying the mechanism of a reaction and designing the novel structures. The use of computational techniques in the investigation of CO2 transformation to value-added chemicals affords brilliant results that attract remarkable attention among scientists. Among various theoretical techniques, density functional theory (DFT) modeling is a powerful and efficient approach to explore the mechanisms of CO2 conversion and investigate novel catalysts for more efficient CO2 transformation. DFT-based approaches are valuable strategies to overcome the disadvantages of trial-and-error experimental processes such as tedious and time-/labor-consuming repetitions. In this chapter, a comprehensive discussion by the DFT calculations is represented about the investigation of the mechanism of the catalytic CO2 transformation into value-added materials such as CO, CH4, CH3OH, HCOOH, and heterocyclic compounds in the presence of heterogeneous, homogeneous, organo-based, and photo- and electro-catalysts. Moreover, the DFT-based design of novel catalytic systems, challenges, and opportunities in CO2 transformations is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFIL:

Amine-functionalized ionic liquid

BDN:

1,8-Bis(diethylamino) naphthalenes

PNP(Ph):

2,6-Bis(diphenylphosphino) methylpyridine

PNP(tBu):

2,6-Bis(di-tert-butylphosphino) methylpyridine

BCP:

Bond critical point

CBM:

Conduction band minimum

DFT:

Density functional theory

DBN:

Diazabicyclo[4.3.0]non-5-ene

DBU:

1,8-Diazabicyclo[5.4.0]undec-7-ene

DNP:

Double numeric plus polarization

ECP:

Effective core potentials

ESM:

Energetic span model

EGR:

Enhanced gas recovery

EGS:

Enhanced geothermal systems

EOR:

Enhanced oil recovery

FLP:

Frustrated Lewis pair

GGA:

Generalized gradient approximation

GO:

Graphene oxide

HOMO:

High occupied molecular orbital

HER:

Hydrogen evolution reaction

HFC:

Hydrofluorocarbon

IEF:

Integral equation formalism

IEFPCM:

Integral equation formalism polarizable continuum model

IPCC:

International Panel on Climate Change

N k :

Local nucleophilicity indices

LUMO:

Low unoccupied molecular orbital

MOF:

Metal−organic framework

MESP:

Molecular electrostatic potential

MO:

Molecular orbitals

\(P_{k}^{ - }\) :

Mulliken atomic spin density

NBO:

Natural bond orbital

NHC:

N-heterocyclic carbine

NHO:

N-heterocyclic olefin

NHE:

Normal hydrogen electrode

NMR:

Nuclear magnetic resonance

PAW:

Projector-augmented wave

PBE:

Perdew−Burke−Ernzerhof

PW:

Perdew–Wang

PFC:

Perfluorocarbon

PR:

Phosphorous reagent

P-ylide:

Phosphorus ylide

PCM:

Polarizable continuum model

PED:

Potential energy diagram

TsCl:

P-Toluenesulfonyl chloride

QTAIM:

Quantum theory of atoms in molecules

RRKJ:

Rappe Rabe Kaxiras Joannopoulos

RDS:

Rate-determining step

RWGS:

Reverse water gas shift

SEM:

Scanning electron microscopy

SMD:

Solvation model based on density

SFLP:

Surface frustrated Lewis pairs

SB:

Superbase

TBAB:

Tetrabutylammonium bromide

THF:

Tetrahydrofuran

TMG:

1,1,3,3-Tetramethylguanidine

TDI:

TOF-determining intermediate

TDTS:

TOF-determining transition state

TEM:

Transmission electron microscopy

TBD:

1,5,7-Triazabicyclo[4.4.0]dec-5-ene

TOF:

Turnover frequency

VSEPR:

Valence shell electron pair repulsion theory

vdW:

Van der Waals

WGSR:

Water gas shift reaction

XPS:

X-ray photoelectron spectroscopy

References

  • Abeydeera UW, Hewage L, Wadu Mesthrige J, Samarasinghalage TI (2019) Global Research on Carbon Emissions: A Scientometric Review. Sustainability 11(14):3972

    Article  Google Scholar 

  • Ahn S, Hong M, Sundararajan M, Ess DH, Baik M-H (2019) Design and optimization of catalysts based on mechanistic insights derived from quantum chemical reaction modeling. Chem Rev 119(11):6509–6560

    Article  CAS  PubMed  Google Scholar 

  • Ajitha MJ, Suresh CH (2012) Assessment of stereoelectronic factors that influence the CO2 fixation ability of N-heterocyclic carbenes: A DFT study. J Org Chem 77(2):1087–1094

    Article  CAS  PubMed  Google Scholar 

  • Álvarez A, Borges M, Corral-Pérez JJ, Olcina JG, Hu L, Cornu D, Huang R, Stoian D, Urakawa A (2017) CO2 activation over catalytic surfaces. ChemPhysChem 18(22):3135–3141

    Article  PubMed  Google Scholar 

  • Andersson MP, Bligaard T, Kustov A, Larsen KE, Greeley J, Johannessen T, Christensen CH, Nørskov JK (2006) Toward computational screening in heterogeneous catalysis: pareto-optimal methanation catalysts. J Catal 239(2):501–506

    Article  CAS  Google Scholar 

  • Aoyagi N, Furusho Y, Endo T (2013) Effective synthesis of cyclic carbonates from carbon dioxide and epoxides by phosphonium iodides as catalysts in alcoholic solvents. Tetrahedron Lett 54(51):7031–7034

    Article  CAS  Google Scholar 

  • Aresta M (2010) Carbon dioxide as chemical feedstock, Wiley Online Library

    Google Scholar 

  • Aresta M, Dibenedetto A (2007) Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans 28:2975–2992

    Article  Google Scholar 

  • Aresta M, Nobile CF, Albano VG, Forni E, Manassero M (1975) New nickel–carbon dioxide complex: synthesis, properties, and crystallographic characterization of (carbon dioxide)-bis (tricyclohexylphosphine) nickel. J Chem Soc. Chem Commun 15:636–637

    Article  Google Scholar 

  • Aresta M, Dibenedetto A, Quaranta E (2016) Reaction mechanisms in carbon dioxide conversion. Springer, Heidelberg

    Book  Google Scholar 

  • Artz J, Müller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, Bardow A, Leitner W (2018) Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem Rev 118(2):434–504

    Article  CAS  PubMed  Google Scholar 

  • Aziz M, Jalil A, Triwahyono S, Ahmad A (2015) CO2 methanation over heterogeneous catalysts: recent progress and future prospects. Green Chem 17(5):2647–2663

    Article  CAS  Google Scholar 

  • Richard F, Bader R (1990) Atoms in molecules: a quantum theory, Oxford University Press

    Google Scholar 

  • Bartlett RJ, Musiał M (2007) Coupled-cluster theory in quantum chemistry. Rev Mod Phys 79(1):291

    Article  CAS  Google Scholar 

  • Bell AT, Gates BC, Ray D, Thompson MR (2008) Basic research needs: catalysis for energy. The U.S. Department of Energy's Office of Scientific and Technical Information

    Google Scholar 

  • Ben-Nun M, Martínez TJ (2002) Ab initio quantum molecular dynamics. Adv Chem Phys 121:439–512

    CAS  Google Scholar 

  • Bensaid S, Centi G, Garrone E, Perathoner S, Saracco G (2012) Towards artificial leaves for solar hydrogen and fuels from carbon dioxide. Chemsuschem 5(3):500–521

    Article  CAS  PubMed  Google Scholar 

  • Bertau M, Offermanns H, Menges G, Keim W, Effenberger F (2010) Methanol needs more attention as a fuel and raw material for the future. Chem Ing Tech (weinh) 82(12):2055–2058

    Article  CAS  Google Scholar 

  • Biswas S, Khatun R, Dolai M, Biswas IH, Haque N, Sengupta M, Islam MS, Islam SM (2020) Catalytic formation of N3-substituted quinazoline-2, 4 (1H, 3H)-diones by Pd (ii) EN@ GO composite and its mechanistic investigations through DFT calculations. New J Chem 44(1):141–151

    Article  CAS  Google Scholar 

  • Bontemps S (2016) Boron-mediated activation of carbon dioxide. Coord Chem Rev 308:117–130

    Article  CAS  Google Scholar 

  • Brickner SJ (1996) Oxazolidinone antibacterial agents. Curr Pharm Des 2(2):175–194

    Article  CAS  Google Scholar 

  • RJ BS, Loganathan M, Shantha MS (2010) A review of the water gas shift reaction kinetics. Int J Chem React Eng 8(1):1–32

    Google Scholar 

  • Calabrese C, Giacalone F, Aprile C (2019) Hybrid catalysts for CO2 conversion into cyclic carbonates. Catalysts 9(4):325

    Article  Google Scholar 

  • Cao Z, Guo L, Liu N, Zheng X, Li W, Shi Y, Guo J, Xi Y (2016) Theoretical study on the reaction mechanism of reverse water–gas shift reaction using a Rh–Mo 6 S 8 cluster. RSC Adv 6(110):108270–108279

    Article  CAS  Google Scholar 

  • Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148(3–4):191–205

    Article  CAS  Google Scholar 

  • Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6(6):1711–1731

    Article  CAS  Google Scholar 

  • Chatelet B, Joucla L, Dutasta J-P, Martinez A, Szeto KC, Dufaud V (2013) Azaphosphatranes as structurally tunable organocatalysts for carbonate synthesis from CO2 and epoxides. J Am Chem Soc 135(14):5348–5351

    Article  CAS  PubMed  Google Scholar 

  • Chen C-S, Cheng W-H, Lin S-S (2000) Mechanism of CO formation in reverse water–gas shift reaction over Cu/Al2O3 catalyst. Catal Lett 68(1–2):45–48

    Article  CAS  Google Scholar 

  • Chen Y, Hone CA, Gutmann B, Kappe CO (2017) Continuous flow synthesis of carbonylated heterocycles via Pd-catalyzed oxidative carbonylation using CO and O2 at elevated temperatures and pressures. Org Process Res Dev 21(7):1080–1087

    Article  CAS  Google Scholar 

  • Chen J, Gao H, Ding T, Ji L, Zhang JZ, Gao G, Xia F (2019) Mechanistic studies of CO2 cycloaddition reaction catalyzed by amine-functionalized ionic liquids. Front Chem 7:615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng D, Negreiros FR, Apra E, Fortunelli A (2013) Computational approaches to the chemical conversion of carbon dioxide. Chemsuschem 6(6):944–965

    Article  CAS  PubMed  Google Scholar 

  • Chiang C-L, Lin K-S, Chuang H-W (2018) Direct synthesis of formic acid via CO2 hydrogenation over Cu/ZnO/Al2O3 catalyst. J Clean Prod 172:1957–1977

    Article  CAS  Google Scholar 

  • Choi S, Sang B-I, Hong J, Yoon KJ, Son J-W, Lee J-H, Kim B-K, Kim H (2017) Catalytic behavior of metal catalysts in high-temperature RWGS reaction: In-situ FT-IR experiments and first-principles calculations. Sci Rep 7:41207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chorkendorff  I,  Niemantsverdriet JW (2017) Concepts of modern catalysis and kinetics. John Wiley & Sons

    Google Scholar 

  • Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kühn FE (2011) Transformation of carbon dioxide with homogeneous transition-metal catalysts: a molecular solution to a global challenge? Angew Chem Int Ed 50(37):8510–8537

    Article  CAS  Google Scholar 

  • Costentin C, Robert M, Savéant J-M (2013) Catalysis of the electrochemical reduction of carbon dioxide. Chem Soc Rev 42(6):2423–2436

    Article  CAS  PubMed  Google Scholar 

  • Cuenya BR (2010) Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films 518(12):3127–3150

    Article  CAS  Google Scholar 

  • Dai Z, Stauffer PH, Carey JW, Middleton RS, Lu Z, Jacobs JF, Hnottavange-Telleen K, Spangler LH (2014) Pre-site characterization risk analysis for commercial-scale carbon sequestration. Environ Sci Technol 48(7):3908–3915

    Article  CAS  PubMed  Google Scholar 

  • Dang S, Yang H, Gao P, Wang H, Li X, Wei W, Sun Y (2019) A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation. Catal Today 330:61–75

    Article  CAS  Google Scholar 

  • Darensbourg DJ (2010) Chemistry of carbon dioxide relevant to its utilization: a personal perspective. Inorg Chem 49(23):10765–10780

    Article  CAS  PubMed  Google Scholar 

  • Domingo LR, Pérez P, Sáez JA (2013) Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv 3(5):1486–1494

    Article  CAS  Google Scholar 

  • Dong X, Liu X, Chen Y, Zhang M (2018) Screening of bimetallic M-Cu-BTC MOFs for CO2 activation and mechanistic study of CO2 hydrogenation to formic acid: A DFT study. J CO2 Util 24:64–72

    Google Scholar 

  • Falivene L, Kozlov SM, Cavallo L (2018) Constructing bridges between computational tools in heterogeneous and homogeneous catalysis. ACS Catal 8(6):5637–5656

    Article  CAS  Google Scholar 

  • Fang S, Chen H, Wei H (2018) Insight into catalytic reduction of CO2 to methane with silanes using Brookhart’s cationic Ir (iii) pincer complex. RSC Adv 8(17):9232–9242

    Article  CAS  Google Scholar 

  • Filonenko GA, Vrijburg WL, Hensen EJ, Pidko EA (2016) On the activity of supported Au catalysts in the liquid phase hydrogenation of CO2 to formates. J Catal 343:97–105

    Article  CAS  Google Scholar 

  • Fiorani G, Guo W, Kleij AW (2015) Sustainable conversion of carbon dioxide: the advent of organocatalysis. Green Chem 17(3):1375–1389

    Article  CAS  Google Scholar 

  • Frontera P, Macario A, Ferraro M, Antonucci P (2017) Supported catalysts for CO2 methanation: a review. Catalysts 7(2):59

    Article  Google Scholar 

  • Fujiwara K, Yasuda S, Mizuta T (2014) Reduction of CO2 to Trimethoxyboroxine with BH3 in THF. Organometallics 33(22):6692–6695

    Article  CAS  Google Scholar 

  • Galvan M, Selva M, Perosa A, Noè M (2014) Toward the design of halide-and metal-free ionic-liquid catalysts for the cycloaddition of CO2 to epoxides. Asian J Org Chem 3(4):504–513

    Article  CAS  Google Scholar 

  • Gao J, He L-N, Miao C-X, Chanfreau S (2010) Chemical fixation of CO2: efficient synthesis of quinazoline-2, 4 (1H, 3H)-diones catalyzed by guanidines under solvent-free conditions. Tetrahedron 66(23):4063–4067

    Article  CAS  Google Scholar 

  • Gattrell M, Gupta N, Co A (2007) Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas. Energy Convers Manag 48(4):1255–1265

    Article  CAS  Google Scholar 

  • Ge H, Jing Y, Yang X (2016) Computational design of cobalt catalysts for hydrogenation of carbon dioxide and dehydrogenation of formic acid. Inorg Chem 55(23):12179–12184

    Article  CAS  PubMed  Google Scholar 

  • Gershikov A, Spiridonov V (1983) Anharmonic force field of CO2 as determined by a gas-phase electron diffraction study. J Mol Struct 96(1–2):141–149

    Article  Google Scholar 

  • Girard A-L, Simon N, Zanatta M, Marmitt S, Gonçalves P, Dupont J (2014) Insights on recyclable catalytic system composed of task-specific ionic liquids for the chemical fixation of carbon dioxide. Green Chem 16(5):2815–2825

    Article  CAS  Google Scholar 

  • Guharoy U, Ramirez Reina T, Gu S, Cai Q (2019) Mechanistic Insights into Selective CO2 Conversion via RWGS on Transition Metal Phosphides: A DFT Study. J Phys Chem C 123(37):22918–22931

    Article  CAS  Google Scholar 

  • Guo S, Wang E (2011) Noble metal nanomaterials: controllable synthesis and application in fuel cells and analytical sensors. Nano Today 6(3):240–264

    Article  CAS  Google Scholar 

  • Han X, Yang J, Han B, Sun W, Zhao C, Lu Y, Li Z, Ren J (2017) Density functional theory study of the mechanism of CO methanation on Ni4/t-ZrO2 catalysts: roles of surface oxygen vacancies and hydroxyl groups. Int J Hydrog Energy 42(1):177–192

    Article  CAS  Google Scholar 

  • Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36(3):354–360

    Article  Google Scholar 

  • Hofmann DJ, Butler JH, Tans PP (2009) A new look at atmospheric carbon dioxide. Atmospheric Environ 43(12):2084–2086

    Article  CAS  Google Scholar 

  • Hu B, Guild C, Suib SL (2013) Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products. J CO2 Util 1:18–27

    Google Scholar 

  • Huang C-H, Tan C-S (2014) A review: CO2 utilization. Aerosol Air Qual Res 14(2):480–499

    Article  CAS  Google Scholar 

  • Hunt AJ, Sin EH, Marriott R, Clark JH (2010) Generation, capture, and utilization of industrial carbon dioxide. Chemsuschem 3(3):306–322

    Article  CAS  PubMed  Google Scholar 

  • Inoue Y, Izumida H, Sasaki Y, Hashimoto H (1976) Catalytic fixation of carbon dioxide to formic acid by transition-metal complexes under mild conditions. Chem Lett 5(8):863–864

    Article  Google Scholar 

  • Jing H, Li Q, Wang J, Liu D, Wu K (2018) Theoretical study of the reverse water gas shift reaction on copper modified β-Mo2C (001) surfaces. J Phys Chem C 123(2):1235–1251

    Article  Google Scholar 

  • Jones G, Jakobsen JG, Shim SS, Kleis J, Andersson MP, Rossmeisl J, Abild-Pedersen F, Bligaard T, Helveg S, Hinnemann B (2008) First principles calculations and experimental insight into methane steam reforming over transition metal catalysts. J Catal 259(1):147–160

    Article  CAS  Google Scholar 

  • Joule JA, Mills K (2010) Heterocyclic chemistry, 5th (Ed.), John Wiley & Sons, Publication Ltd., Blackwell Publishing Ltd, West Sussex, UK

    Google Scholar 

  • Kayaki Y, Yamamoto M, Ikariya T (2009) N-heterocyclic carbenes as efficient organocatalysts for CO2 fixation reactions. Angew Chem Int Ed 48(23):4194–4197

    Article  CAS  Google Scholar 

  • Keim W, Offermanns H (2010) Beyong oil and gas: early visions of the natives of Aachen. Nachr Chem 58(4):434–435

    Article  CAS  Google Scholar 

  • Kheirabadi R, Izadyar M, Housaindokht MR (2018) Computational kinetic modeling of the catalytic cycle of glutathione peroxidase nanomimic: effect of nucleophilicity of thiols on the catalytic activity. J Phys Chem A 122(1):364–374

    Article  CAS  PubMed  Google Scholar 

  • Kohn W (1999) Nobel Lecture: Electronic structure of matter—wave functions and density functionals. Rev Mod Phys 71(5):1253

    Article  CAS  Google Scholar 

  • Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133

    Article  Google Scholar 

  • Kolodiazhnyi OI (2008) Phosphorus ylides: chemistry and applications in organic synthesis. John Wiley & Sons

    Google Scholar 

  • Kozuch S, Shaik S (2011) How to conceptualize catalytic cycles? The energetic span model. Acc Chem Res 44(2):101–110

    Article  CAS  PubMed  Google Scholar 

  • Kwon IS, Debela TT, Kwak IH, Seo HW, Park K, Kim D, Yoo SJ, Kim J-G, Park J, Kang HS (2019) Selective electrochemical reduction of carbon dioxide to formic acid using indium–zinc bimetallic nanocrystals. J Mater Chem A 7(40):22879–22883

    Article  CAS  Google Scholar 

  • Lapidus A, Gaidai N, Nekrasov N, Tishkova L, Agafonov YA, Myshenkova T (2007) The mechanism of carbon dioxide hydrogenation on copper and nickel catalysts. Pet Chem 47(2):75–82

    Article  Google Scholar 

  • Lee S-Y, Park S-J (2015) A review on solid adsorbents for carbon dioxide capture. J Ind Eng Chem 23:1–11

    Article  Google Scholar 

  • Liu Q, Wu L, Jackstell R, Beller M (2015) Using carbon dioxide as a building block in organic synthesis. Nat Commun 6:5933

    Article  PubMed  Google Scholar 

  • Liu M, Yi Y, Wang L, Guo H, Bogaerts A (2019) Hydrogenation of carbon dioxide to value-added chemicals by heterogeneous catalysis and plasma catalysis. Catalysts 9(3):275

    Article  Google Scholar 

  • Luther Iii GW (2004) Kinetics of the reactions of water, hydroxide ion and sulfide species with CO2, OCS and CS2: frontier molecular orbital considerations. Aquat Geochem 10(1–2):81–97

    Article  Google Scholar 

  • Ma J, Sun N, Zhang X, Zhao N, Xiao F, Wei W, Sun Y (2009) A short review of catalysis for CO2 conversion. Catal Today 148(3–4):221–231

    Article  CAS  Google Scholar 

  • Ma J, Hu J, Lu W, Zhang Z, Han B (2013) Theoretical study on the reaction of CO2 and 2-aminobenzonitrile to form quinazoline-2, 4 (1 H, 3 H)-dione in water without any catalyst. Phys Chem Chem Phys 15(40):17333–17341

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Song W, Liu B, Zhong W, Deng J, Zheng H, Liu J, Gong X-Q, Zhao Z (2016) Facet-dependent photocatalytic performance of TiO2: A DFT study. Appl Catal B 198:1–8

    Article  CAS  Google Scholar 

  • Maslin M (2008) Global warming: a very short introduction. Oxford University Press

    Google Scholar 

  • Mikkelsen M, Jørgensen M, Krebs FC (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci 3(1):43–81

    Google Scholar 

  • Mizuno T, Okamoto N, Ito T, Miyata T (2000a) Synthesis of 2, 4-dihydroxyquinazolines using carbon dioxide in the presence of DBU under mild conditions. Tetrahedron Lett 41(7):1051–1053

    Article  CAS  Google Scholar 

  • Mizuno T, Okamoto N, Ito T, Miyata T (2000b) Synthesis of quinazolines using carbon dioxide (or carbon monoxide with sulfur) under mild conditions. Heteroat Chem 11(6):428–433

    Article  CAS  Google Scholar 

  • Mukherjee A, Okolie JA, Abdelrasoul A, Niu C, Dalai AK (2019) Review of post-combustion carbon dioxide capture technologies using activated carbon. J Environ Sci 83:46–63

    Article  Google Scholar 

  • Muradov N (2014) Industrial utilization of CO2: a win–win solution. In: liberating energy from carbon: introduction to decarbonization. Springer, pp 325–383

    Google Scholar 

  • Murphy LJ, Robertson KN, Kemp RA, Tuononen HM, Clyburne JA (2015) Structurally simple complexes of CO2. Chem Commun 51(19):3942–3956

    Article  CAS  Google Scholar 

  • Nakamura S, Hatakeyama M, Wang Y, Ogata K, Fujii K (2015) A basic quantum chemical review on the activation of CO2. In: advances in CO2 capture, sequestration, and conversion. ACS Publications, Chapter 5, pp 123–134

    Google Scholar 

  • Nale DB, Saigaonkar SD, Bhanage BM (2014) An efficient synthesis of quinazoline-2, 4 (1H, 3H)-dione from CO2 and 2-aminobenzonitrile using [Hmim] OH/SiO2 as a base functionalized supported ionic liquid phase catalyst. J CO2 Util 8:67–73

    Google Scholar 

  • Niemi T, Repo T (2019) Antibiotics from carbon dioxide: sustainable pathways to pharmaceutically relevant cyclic carbamates. Eur J Org Chem 2019(6):1180–1188

    Google Scholar 

  • Niemi T, Fernández I, Steadman B, Mannisto JK, Repo T (2018) Carbon dioxide-based facile synthesis of cyclic carbamates from amino alcohols. Chem Commun 54(25):3166–3169

    Article  CAS  Google Scholar 

  • Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1(1):37

    Article  PubMed  Google Scholar 

  • Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T (2011) Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci USA (PNAS) 108(3):937–943

    Article  Google Scholar 

  • IEA OECD (2016) Energy and air pollution: world energy outlook (Special Report)

    Google Scholar 

  • Ola O, Maroto-Valer MM, Mackintosh S (2013) Turning CO2 into valuable chemicals. Energy Procedia 37:6704–6709

    Article  CAS  Google Scholar 

  • Olah GA, Goeppert A, Prakash GS (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74(2):487–498

    Article  CAS  PubMed  Google Scholar 

  • Olah GA, Goeppert A, Prakash GS (2018) Beyond oil and gas: the methanol economy. Third updated and enlarged edition, John Wiley & Sons (US)

    Google Scholar 

  • Ou L, Chen J, Chen Y, Jin J (2019) Mechanistic study on Cu-catalyzed CO2 electroreduction into CH4 at simulated low overpotentials based on an improved electrochemical model. Phys Chem Chem Phys 21(28):15531–15540

    Article  CAS  PubMed  Google Scholar 

  • Paparo A, Okuda J (2017) Carbon dioxide complexes: bonding modes and synthetic methods. Coord Chem Rev 334:136–149

    Article  CAS  Google Scholar 

  • Peng G, Sibener S, Schatz GC, Mavrikakis M (2012) CO2 hydrogenation to formic acid on Ni (110). Surf Sci 606(13–14):1050–1055

    Article  CAS  Google Scholar 

  • Podrojkova N, Sans V, Orinak A, Orinakova R (2020) Recent developments in heterogeneous catalysts modelling for CO2 conversion to chemicals. ChemCatChem 12(7):1802–1825

    Google Scholar 

  • Pople JA (1999) Nobel lecture: Quantum chemical models. Rev Mod Phys 71(5):1267

    Article  CAS  Google Scholar 

  • Qiu M, Tao H, Li R, Li Y, Huang X, Chen W, Su W, Zhang Y (2016) Insight into the mechanism for the methanol synthesis via the hydrogenation of CO2 over a Co-modified Cu (100) surface: A DFT study. J Chem Phys 145(13):134701

    Google Scholar 

  • Rachuri Y, Kurisingal JF, Chitumalla RK, Vuppala S, Gu Y, Jang J, Choe Y, Suresh E, Park D-W (2019) Adenine-based Zn (II)/Cd (II) metal-organic frameworks as efficient heterogeneous catalysts for facile CO2 fixation into cyclic carbonates: a DFT-supported study of the reaction mechanism. Inorg Chem 58(17):11389–11403

    Article  CAS  PubMed  Google Scholar 

  • Rafiee A, Khalilpour KR, Milani D, Panahi M (2018) Trends in CO2 conversion and utilization: a review from process systems perspective. J Environ Chem Eng 6(5):5771–5794

    Article  CAS  Google Scholar 

  • Rashidi NA, Yusup S (2016) An overview of activated carbons utilization for the post-combustion carbon dioxide capture. J CO2 Util 13:1–16

    Google Scholar 

  • Rawat KS, Mahata A, Pathak B (2017) Thermochemical and electrochemical CO2 reduction on octahedral Cu nanocluster: role of solvent towards product selectivity. J Catal 349:118–127

    Article  CAS  Google Scholar 

  • Ren J, Guo H, Yang J, Qin Z, Lin J, Li Z (2015) Insights into the mechanisms of CO2 methanation on Ni (111) surfaces by density functional theory. Appl Surf Sci 351:504–516

    Article  CAS  Google Scholar 

  • Riduan SN, Zhang Y (2010) Recent developments in carbon dioxide utilization under mild conditions. Dalton Trans 39(14):3347–3357

    Article  CAS  PubMed  Google Scholar 

  • Sabet-Sarvestani H, Eshghi H, Bakavoli M, Izadyar M, Rahimizadeh M (2014) Theoretical investigation of the chemoselectivity and synchronously pyrazole ring formation mechanism from ethoxymethylenemalononitrile and hydrazine hydrate in the gas and solvent phases: DFT, meta-GGA studies and NBO analysis. RSC Adv 4(82):43485–43495

    Article  CAS  Google Scholar 

  • Sabet-Sarvestani H, Eshghi H, Izadyar M, Noroozi-Shad N, Bakavoli M, Ziaee F (2016) Borohydride salts as high efficiency reducing reagents for carbon dioxide transformation to methanol: Theoretical approach. Int J Hydrog Energy 41(26):11131–11140

    Article  CAS  Google Scholar 

  • Sabet-Sarvestani H, Eshghi H, Izadyar M (2017a) Understanding the mechanism, thermodynamic and kinetic features of the Kukhtin-Ramirez reaction in carbamate synthesis from carbon dioxide. RSC Adv 7(3):1701–1710

    Article  CAS  Google Scholar 

  • Sabet-Sarvestani H, Eshghi H, Izadyar M (2017b) A theoretical study on the efficiency and role of guanidines-based organic superbases on carbon dioxide utilization in quinazoline-2, 4 (1H, 3H)-diones synthesis. Struct Chem 28(3):675–686

    Article  CAS  Google Scholar 

  • Sabet-Sarvestani H, Izadyar M, Eshghi H (2017) Phosphorus ylides as a new class of compounds in CO2 activation: Thermodynamic and kinetic studies. J CO2 Util 21:459–466

    Google Scholar 

  • Sabet-Sarvestani H, Izadyar M, Eshghi H, Noroozi-Shad N, Bakavoli M (2018) Proton sponge as a new efficient catalyst for carbon dioxide transformation to methanol: theoretical approach. Fuel 221:491–500

    Article  CAS  Google Scholar 

  • Sabet-Sarvestani H, Izadyar M, Eshghi H, Norozi-Shad N (2020) Evaluation and understanding the performances of various derivatives of carbonyl-stabilized phosphonium ylides in CO2 transformation to cyclic carbonates. Phys Chem Chem Phys 22(1):223–237

    Article  CAS  Google Scholar 

  • Saeidi S, Amin NAS, Rahimpour MR (2014) Hydrogenation of CO2 to value-added products—a review and potential future developments. J CO2 Util 5:66–81

    Google Scholar 

  • Saeidi S, Najari S, Fazlollahi F, Nikoo MK, Sefidkon F, Klemeš JJ, Baxter LL (2017) Mechanisms and kinetics of CO2 hydrogenation to value-added products: a detailed review on current status and future trends. Renew Sust Energ Rev 80:1292–1311

    Article  CAS  Google Scholar 

  • Sakakura T, Choi J-C, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107(6):2365–2387

    Article  CAS  PubMed  Google Scholar 

  • Saxena R, Singh VK, Kumar EA (2014) Carbon dioxide capture and sequestration by adsorption on activated carbon. Energy Procedia 54:320–329

    Article  CAS  Google Scholar 

  • Schaadt R, Sweeney D, Shinabarger D, Zurenko G (2009) In vitro activity of TR-700, the active ingredient of the antibacterial prodrug TR-701, a novel oxazolidinone antibacterial agent. Antimicrob Agents Chemother 53(8):3236–3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schilling W, Das S (2018) CO2-catalyzed/promoted transformation of organic functional groups. Tetrahedron Lett 59(43):3821–3828

    Article  CAS  Google Scholar 

  • Scibioh M, Viswanathan B (2018) Chapter 5—heterogeneous hydrogenation of CO2. Carbon Dioxide Chem Fuels 191–253

    Google Scholar 

  • Sehested J, Larsen KE, Kustov AL, Frey AM, Johannessen T, Bligaard T, Andersson MP, Nørskov JK, Christensen CH (2007) Discovery of technical methanation catalysts based on computational screening. Top Catal 45(1–4):9–13

    Article  CAS  Google Scholar 

  • Shih CF, Zhang T, Li J, Bai C (2018) Powering the future with liquid sunshine. Joule 2(10):1925–1949

    Article  CAS  Google Scholar 

  • Siqueira RM, Freitas GR, Peixoto HR, do Nascimento JF, Musse APS, Torres AE, Azevedo DC, Bastos-Neto M (2017) Carbon dioxide capture by pressure swing adsorption. Energy Procedia 114:2182–2192

    Google Scholar 

  • Sirijaraensre J, Limtrakul J (2016) Hydrogenation of CO2 to formic acid over a Cu-embedded graphene: A DFT study. Appl Surf Sci 364:241–248

    Article  CAS  Google Scholar 

  • Somorjai GA, Li Y (2010) Major successes of theory-and-experiment-combined studies in surface chemistry and heterogeneous catalysis. Top Catal 53(5–6):311–325

    Article  CAS  Google Scholar 

  • Song Q-W, Zhou Z-H, He L-N (2017) Efficient, selective and sustainable catalysis of carbon dioxide. Green Chem 19(16):3707–3728

    Article  CAS  Google Scholar 

  • Spigarelli BP, Kawatra SK (2013) Opportunities and challenges in carbon dioxide capture. J CO2 Util 1:69–87

    Google Scholar 

  • Spinner NS, Vega JA, Mustain WE (2012) Recent progress in the electrochemical conversion and utilization of CO2. Catal Sci Technol 2(1):19–28

    Article  CAS  Google Scholar 

  • Streitwieser A (2009) Perspectives on computational organic chemistry. J Org Chem 74(12):4433–4446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su X, Yang X, Zhao B, Huang Y (2017) Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: recent advances and the future directions. J Energy Chem 26(5):854–867

    Article  Google Scholar 

  • Topham S, Bazzanella A, Schiebahn S, Luhr S, Zhao L, Otto A, Stolten D (2000) Carbon dioxide. Ullmann’s encyclopedia of industrial chemistry, wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

    Google Scholar 

  • Tsutsumi Y, Yamakawa K, Yoshida M, Ema T, Sakai T (2010) Bifunctional organocatalyst for activation of carbon dioxide and epoxide to produce cyclic carbonate: betaine as a new catalytic motif. Org Lett 12(24):5728–5731

    Article  CAS  PubMed  Google Scholar 

  • Uhe A, Hoelscher M, Leitner W (2012) Carboxylation of arene C. H Bonds with CO2: aDFT‐based approach to catalyst design. Chem–A Eur J 18(1):170–177

    Google Scholar 

  • Wang SR, Radosevich AT (2013) Reductive homocondensation of benzylidene-and alkylidenepyruvate esters by a P (NMe2) 3-mediated tandem reaction. Org Lett 15(8):1926–1929

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Xi C (2019) Recent advances in nucleophile-triggered CO2-incorporated cyclization leading to heterocycles. Chem Soc Rev 48(1):382–404

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40(7):3703–3727

    Article  CAS  PubMed  Google Scholar 

  • Wang J-Q, Dong K, Cheng W-G, Sun J, Zhang S-J (2012) Insights into quaternary ammonium salts-catalyzed fixation carbon dioxide with epoxides. Catal Sci Technol 2(7):1480–1484

    Article  Google Scholar 

  • Wang Y-B, Wang Y-M, Zhang W-Z, Lu X-B (2013) Fast CO2 sequestration, activation, and catalytic transformation using N-heterocyclic olefins. J Am Chem Soc 135(32):11996–12003

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Sun W, Liu C (2018a) Recent advances in homogeneous carbonylation using CO2 as CO surrogate. Chinese J Chem 36(4):353–362

    Article  Google Scholar 

  • Wang L, Ghoussoub M, Wang H, Shao Y, Sun W, Tountas AA, Wood TE, Li H, Loh JYY, Dong Y (2018b) Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure. Joule 2(7):1369–1381

    Article  CAS  Google Scholar 

  • Wang W-H, Feng X, Bao M (2018) Transformation of CO2 to formic acid or formate with homogeneous catalysts. In: transformation of carbon dioxide to formic acid and methanol. Springer, pp 7–42

    Google Scholar 

  • Wei W, Jinlong G (2011) Methanation of carbon dioxide: an overview. Front Chem Sci Eng 5(1):2–10

    Article  Google Scholar 

  • Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297–3305

    Article  CAS  PubMed  Google Scholar 

  • Wong WL, Chan PH, Zhou ZY, Lee KH, Cheung KC, Wong KY (2008) A robust ionic liquid as reaction medium and efficient organocatalyst for carbon dioxide fixation. Chemsuschem 1(1–2):67–70

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Cole J, Fang HL, Qin M, He Z (2017) Revisiting catalyst structure and mechanism in methanol synthesis. J Adv Nanomater (JAN) 2(1):1–10

    Google Scholar 

  • Wu P, Zaffran J, Yang B (2019) Role of surface species interactions in identifying the reaction mechanism of methanol synthesis from CO2 hydrogenation over intermetallic PdIn (310) steps. J Phys Chem C 123(22):13615–13623

    Article  CAS  Google Scholar 

  • Yaashikaa P, Kumar PS, Varjani SJ, Saravanan A (2019) A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products. J CO2 Util 33:131–147

    Google Scholar 

  • Yan X, Guo H, Yang D, Qiu S, Yao X (2014) Catalytic hydrogenation of carbon dioxide to fuels. Curr Org Chem 18(10):1335–1345

    Article  CAS  Google Scholar 

  • Yang Z-Z, He L-N, Zhao Y-N, Li B, Yu B (2011) CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion. Energy Environ Sci 4(10):3971–3975

    Article  CAS  Google Scholar 

  • Yang L, Pastor-Pérez L, Gu S, Sepúlveda-Escribano A, Reina T (2018) Highly efficient Ni/CeO2-Al2O3 catalysts for CO2 upgrading via reverse water-gas shift: effect of selected transition metal promoters. Appl Catal B 232:464–471

    Article  CAS  Google Scholar 

  • Yaumi A, Bakar MA, Hameed B (2017) Recent advances in functionalized composite solid materials for carbon dioxide capture. Energy 124:461–480

    Article  CAS  Google Scholar 

  • Yu KK, Curcic I, Gabriel J, Morganstewart H, Tsang SC (2010) Catalytic coupling of CO2 with epoxide over supported and unsupported amines. J Phys Chem A 114(11):3863–3872

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-J, Da Y-B (2015) The decomposition of energy-related carbon emission and its decoupling with economic growth in China. Renew. Sust. Energ. Rev. 41:1255–1266

    Article  Google Scholar 

  • Zhang Q, Guo L (2018) Mechanism of the reverse water-gas shift reaction catalyzed by Cu12TM bimetallic nanocluster: a density functional theory study. J Clust Sci 29(5):867–877

    Article  CAS  Google Scholar 

  • Zhang X, Liu J-X, Zijlstra B, Filot IA, Zhou Z, Sun S, Hensen EJ (2018a) Optimum Cu nanoparticle catalysts for CO2 hydrogenation towards methanol. Nano Energy 43:200–209

    Article  Google Scholar 

  • Zhang W, Wang S, Zhao Y, Ma X (2018b) Hydrogenation of CO2 to formic acid catalyzed by heterogeneous Ru-PPh3/Al2O3 catalysts. Fuel Process Technol 178:98–103

    Article  CAS  Google Scholar 

  • Zhao W, Fink DM, Labutta CA, Radosevich AT (2013) A Csp3–Csp3 bond forming reductive condensation of α-Keto esters and enolizable carbon pronucleophiles. Org Lett 15(12):3090–3093

    Article  CAS  PubMed  Google Scholar 

  • Zhong J, Yang X, Wu Z, Liang B, Huang Y, Zhang T (2020) State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem Soc Rev 49(5):1385–1413

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Wang G-X, Zhang W-Z, Lu X-B (2015) CO2 adducts of phosphorus ylides: highly active organocatalysts for carbon dioxide transformation. ACS Catal 5(11):6773–6779

    Article  CAS  Google Scholar 

  • Zhu L, Ye J-H, Duan M, Qi X, Yu D-G, Bai R, Lan Y (2018) The mechanism of copper-catalyzed oxytrifluoromethylation of allylamines with CO2: a computational study. Inorg Chem Front 5(4):633–639

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Izadyar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sabet-Sarvestani, H., Izadyar, M., Eshghi, H., Noroozi-Shad, N. (2022). Theoretical Approaches to CO2 Transformations. In: Inamuddin, Boddula, R., Ahamed, M.I., Khan, A. (eds) Carbon Dioxide Utilization to Sustainable Energy and Fuels. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-72877-9_8

Download citation

Publish with us

Policies and ethics