Skip to main content
Log in

Highly ordered Janus CdS-Au-TiO2 Z-scheme structure with high efficiency in photocatalysis

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Precise structural control had attracted tremendous interest in nanosynthesis due to its great importance in tailoring the physical properties of nanomaterials. Here we report the synthesis of highly ordered CdS-Au-TiO2 ternary Janus structure via template-protected sequential growth and conversion method. Arising from the integration of the rectification effect of Au-CdS and Au-TiO2 Schottky barriers, the Janus configuration of the CdS-TiO2 domains, the plasmonic effect of Au nanosphere, and the Z-scheme charge transportation, the CdS-Au-TiO2 Janus structure showed high efficiency in the model photocatalytic degradation of methyl orange (MO) dye. Importantly, the well-defined structural order allowed the identification of the correlation between the structure and the catalytic performance. We believe that the synthetic control and the mechanism insights would help the design and synthesis of sophisticated nanostructures, and would eventually promote their applications in photocatalysis fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ. Chem Soc Rev, 2014, 43: 7787–7812

    CAS  PubMed  Google Scholar 

  2. Yu J, Low J, Xiao W, Zhou P, Jaroniec M. J Am Chem Soc, 2014, 136: 8839–8842

    CAS  PubMed  Google Scholar 

  3. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK. Angew Chem Int Ed, 2013, 52: 7372–7408

    CAS  Google Scholar 

  4. Yang J, Wang D, Han H, Li C. Acc Chem Res, 2013, 46: 1900–1909

    CAS  PubMed  Google Scholar 

  5. Ng B, Putri LK, Kong XY, Teh YW, Pasbakhsh P, Chai S. Adv Sci, 2020, 7: 1903171

    CAS  Google Scholar 

  6. Moniz SJA, Shevlin SA, Martin DJ, Guo ZX, Tang J. Energy Environ Sci, 2015, 8: 731–759

    CAS  Google Scholar 

  7. Li X, Yu J, Jaroniec M, Chen X. Chem Rev, 2019, 119: 3962–4179

    CAS  PubMed  Google Scholar 

  8. Kim J, Lee J, Choi W. Chem Commun, 2008,: 756–758

  9. Jiang R, Li B, Fang C, Wang J. Adv Mater, 2014, 26: 5274–5309

    CAS  PubMed  Google Scholar 

  10. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA. Adv Mater, 2017, 29: 1601694

    Google Scholar 

  11. Li H, Tu W, Zhou Y, Zou Z. Adv Sci, 2016, 3: 1500389

    Google Scholar 

  12. Zhao X, Feng J, Liu J, Lu J, Shi W, Yang G, Wang G, Feng P, Cheng P. Adv Sci, 2018, 5: 1700590

    Google Scholar 

  13. Zhang M, Chang JN, Chen Y, Lu M, Yu TY, Jiang C, Li SL, Cai YP, Lan YQ. Adv Mater, 2021, 33: 2105002

    CAS  Google Scholar 

  14. Xu Q, Zhang L, Cheng B, Fan J, Yu J. Chem, 2020, 6: 1543–1559

    CAS  Google Scholar 

  15. Xu M, Lu M, Qin G, Wu X, Yu T, Zhang L, Li K, Cheng X, Lan Y. Angew Chem Int Ed, 2022, 61: e202210700

    CAS  Google Scholar 

  16. Suzuki TM, Iwase A, Tanaka H, Sato S, Kudo A, Morikawa T. J Mater Chem A, 2015, 3: 13283–13290

    CAS  Google Scholar 

  17. Ma K, Yehezkeli O, Domaille DW, Funke HH, Cha JN. Angew Chem Int Ed, 2015, 54: 11490–11494

    CAS  Google Scholar 

  18. Di Bartolomeo A. Phys Rep, 2016, 606: 1–58

    CAS  Google Scholar 

  19. Zhang X, Lim Chen Y, Liu RS, Tsai DP. Rep Prog Phys, 2013, 76

  20. Xu W, Jia J, Wang T, Li C, He B, Zong J, Wang Y, Fan HJ, Xu H, Feng Y, Chen H. Angew Chem Int Ed, 2020, 59: 22246–22251

    CAS  Google Scholar 

  21. Xu W, Chen S, Xiao R, Zong J, Feng Y, Chen H. Chem Mater, 2021, 33: 5268–5275

    CAS  Google Scholar 

  22. Aguirre ME, Zhou R, Eugene AJ, Guzman MI, Grela MA. Appl Catal B-Environ, 2017, 217: 485–493

    CAS  Google Scholar 

  23. Wan X, Gao Y, Eshete M, Hu M, Pan R, Wang H, Liu L, Liu J, Jiang J, Brovelli S, Zhang J. Nano Energy, 2022, 98: 107217

    CAS  Google Scholar 

  24. Li X, Han B, Chen X, Li X, Weng J, Xu Q, Xu J. J Mater Chem A, 2022, 10: 18490–18508

    CAS  Google Scholar 

  25. Liu X, Chen K, Li X, Xu Q, Weng J, Xu J. Adv Mater, 2021, 33: 2005924

    CAS  Google Scholar 

  26. Xiao L, Li G, Yang Z, Chen K, Zhou R, Liao H, Xu Q, Xu J. Adv Funct Mater, 2021, 31: 2100982

    CAS  Google Scholar 

  27. Wang H, Rong H, Wang D, Li X, Zhang E, Wan X, Bai B, Xu M, Liu J, Liu J, Chen W, Zhang J. Small, 2020, 16: 2000426

    CAS  Google Scholar 

  28. Feng Y, Chen H. Design and synthesis of plasmonic nanoparticles. In: Nam JM, Ed. World Scientific Reference on Plasmonic Nanomaterials. Volume 22. Singapore: World Scientific, 2021. 31–84

    Google Scholar 

  29. Frens G. Nat Phys Sci, 1973, 241: 20–22

    CAS  Google Scholar 

  30. Chen T, Chen G, Xing S, Wu T, Chen H. Chem Mater, 2010, 22: 3826–3828

    CAS  Google Scholar 

  31. Zhang J, Tang Y, Lee K, Ouyang M. Science, 2010, 327: 1634–1638

    CAS  PubMed  Google Scholar 

  32. Liu J, Feng J, Gui J, Chen T, Xu M, Wang H, Dong H, Chen H, Li X, Wang L, Chen Z, Yang Z, Liu J, Hao W, Yao Y, Gu L, Weng Y, Huang Y, Duan X, Zhang J, Li Y. Nano Energy, 2018, 48: 44–52

    CAS  Google Scholar 

  33. Wu B, Liu D, Mubeen S, Chuong TT, Moskovits M, Stucky GD. J Am Chem Soc, 2016, 138: 1114–1117

    CAS  PubMed  Google Scholar 

  34. Feng Y, He J, Wang H, Tay YY, Sun H, Zhu L, Chen H. JAm Chem Soc, 2012, 134: 2004–2007

    CAS  Google Scholar 

  35. Zeng J, Tao J, Su D, Zhu Y, Qin D, Xia Y. Nano Lett, 2011, 11: 3010–3015

    CAS  PubMed  Google Scholar 

  36. Zhao Q, Ji M, Qian H, Dai B, Weng L, Gui J, Zhang J, Ouyang M, Zhu H. Adv Mater, 2014, 26: 1387–1392

    CAS  PubMed  Google Scholar 

  37. Li H, Bian Z, Zhu J, Huo Y, Li H, Lu Y. J Am Chem Soc, 2007, 129: 4538–4539

    CAS  PubMed  Google Scholar 

  38. Wang C, Yin L, Zhang L, Liu N, Lun N, Qi Y. ACS Appl Mater Interfaces, 2010, 2: 3373–3377

    CAS  PubMed  Google Scholar 

  39. Ammar IA, Awad SA. J Phys Chem, 1956, 60: 837–841

    CAS  Google Scholar 

  40. Liu R, Sen A. J Am Chem Soc, 2012, 134: 17505–17512

    CAS  PubMed  Google Scholar 

  41. Nasir JA, Rehman Z, Shah SNA, Khan A, Butler IS, Catlow CRA. J Mater Chem A, 2020, 8: 20752–20780

    CAS  Google Scholar 

  42. Liu Z, Hou W, Pavaskar P, Aykol M, Cronin SB. Nano Lett, 2011, 11: 1111–1116

    CAS  PubMed  Google Scholar 

  43. Mubeen S, Hernandez-Sosa G, Moses D, Lee J, Moskovits M. Nano Lett, 2011, 11: 5548–5552

    CAS  PubMed  Google Scholar 

  44. Chen HM, Chen CK, Chen CJ, Cheng LC, Wu PC, Cheng BH, Ho YZ, Tseng ML, Hsu YY, Chan TS, Lee JF, Liu RS, Tsai DP. ACS Nano, 2012, 6: 7362–7372

    CAS  PubMed  Google Scholar 

  45. Zhang Z, Yates Jr. JT. Chem Rev, 2012, 112: 5520–5551

    CAS  PubMed  Google Scholar 

  46. Li J, Cushing SK, Zheng P, Senty T, Meng F, Bristow AD, Manivannan A, Wu N. J Am Chem Soc, 2014, 136: 8438–8449

    CAS  PubMed  Google Scholar 

  47. Di T, Xu Q, Ho WK, Tang H, Xiang Q, Yu J. ChemCatChem, 2019, 11: 1394–1411

    CAS  Google Scholar 

  48. Ge H, Xu F, Cheng B, Yu J, Ho W. ChemCatChem, 2019, 11: 6301–6309

    CAS  Google Scholar 

  49. Wang L, Fu Y, Li Q, Wang Z. Environ Sci Technol, 2022, 56: 8796–8806

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Jiangsu Science and Technology Plan (BK20211258), Nanjing Tech University (39837140), and Jiangsu Funding Program for Excellent Postdoctoral Talen.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjia Xu or Yuhua Feng.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, R., Zhang, J., Jiang, T. et al. Highly ordered Janus CdS-Au-TiO2 Z-scheme structure with high efficiency in photocatalysis. Sci. China Chem. 66, 1722–1730 (2023). https://doi.org/10.1007/s11426-023-1551-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1551-7

Keywords

Navigation