Skip to main content
Log in

The contribution of water molecules to the hydrogen evolution reaction

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Traditionally, water molecules act as solvents in most chemical reactions, whereas they act as solvents and reactants in the alkaline electrolyte for the hydrogen evolution reaction (HER). It is well known that there is a current plateau in the linear potential—current dependence for HER in neutral or near-neutral electrolytes, showing that the HER is governed by the mass transport of reactive hydronium species at a given overpotential. The sharp rise in the current signal after the plateau at a slightly higher overpotential indicates that HER is supported by a new reactant, namely the water molecules rather than the limited hydronium species. Herein, in combination with our own research experience in water electrolysis, we review the relevant literature in these years about the HER activity descriptor and mainly focus on the contribution of water molecules to the HER, including their dissociation, configuration, and composition in regulating the pH-dependent HER. Finally, we try to provide new insights into understanding the mechanism of the HER in terms of interfacial water enrichment, orientation, and configuration with the electric field strength of electrode/electrolyte interface and electrode compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Science, 2017, 355: eaad4998

    Article  PubMed  Google Scholar 

  2. Yang Y, Peltier CR, Zeng R, Schimmenti R, Li Q, Huang X, Yan Z, Potsi G, Selhorst R, Lu X, Xu W, Tader M, Soudackov AV, Zhang H, Krumov M, Murray E, Xu P, Hitt J, Xu L, Ko HY, Ernst BG, Bundschu C, Luo A, Markovich D, Hu M, He C, Wang H, Fang J, DiStasio Jr. RA, Kourkoutis LF, Singer A, Noonan KJT, Xiao L, Zhuang L, Pivovar BS, Zelenay P, Herrero E, Feliu JM, Suntivich J, Giannelis EP, Hammes-Schiffer S, Arias T, Mavrikakis M, Mallouk TE, Brock JD, Muller DA, DiSalvo FJ, Coates GW, Abruña HD. Chem Rev, 2022, 122: 6117–6321

    Article  CAS  PubMed  Google Scholar 

  3. Chi J, Yu H. Chin J Catal, 2018, 39: 390–394

    Article  CAS  Google Scholar 

  4. Guo X, Wan X, Liu Q, Li Y, Li W, Shui J. eScience, 2022, 2: 304–310

    Article  Google Scholar 

  5. Li M, Zheng X, Li L, Wei Z. Acta Physico Chim Sin, 2020, 36: 2007054

    Article  Google Scholar 

  6. You N, Cao S, Huang M, Fan X, Shi K, Huang H, Chen Z, Yang Z, Zhang W. Nano Mater Sci, 2021, DOI:https://doi.org/10.1016/j.nanoms.2021.05.004

  7. Fang Y, Sun D, Niu S, Cai J, Zang Y, Wu Y, Zhu L, Xie Y, Liu Y, Zhu Z, Mosallanezhad A, Niu D, Lu Z, Shi J, Liu X, Rao D, Wang G, Qian Y. Sci China Chem, 2020, 63: 1563–1569

    Article  CAS  Google Scholar 

  8. Wang F, Xu G, He Y, Liu Z, Zhang Z, Mao Q, Huang Y. J Energy Chem, 2020, 51: 101–104

    Article  Google Scholar 

  9. Cheng C, Shah SSA, Najam T, Zhang L, Qi X, Wei Z. J Energy Chem, 2017, 26: 1245–1251

    Article  Google Scholar 

  10. Zhang Z, Chen K, Zhao Q, Huang M, Ouyang X. Nano Mater Sci, 2021, 3: 89–94

    Article  CAS  Google Scholar 

  11. Liu Q, Wang E, Sun G. Chin J Catal, 2020, 41: 574–591

    Article  CAS  Google Scholar 

  12. Wang T, Cao X, Jiao L. eScience, 2021, 1: 69–74

    Article  Google Scholar 

  13. Zhang S, Wu Y, Zhang YX, Niu Z. Sci China Chem, 2021, 64: 1908–1922

    Article  CAS  Google Scholar 

  14. Li Z, Huang W. Sci China Chem, 2021, 64: 1076–1087

    Article  CAS  Google Scholar 

  15. Durst J, Siebel A, Simon C, Hasché F, Herranz J, Gasteiger HA. Energy Environ Sci, 2014, 7: 2255–2260

    Article  CAS  Google Scholar 

  16. Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, van der Vliet D, Paulikas AP, Stamenkovic VR, Markovic NM. Nat Chem, 2013, 5: 300–306

    Article  CAS  PubMed  Google Scholar 

  17. Schouten KJP, van der Niet MJTC, Koper MTM. Phys Chem Chem Phys, 2010, 12: 15217–15224

    Article  CAS  PubMed  Google Scholar 

  18. Fu C, Yan X, Yang L, Shen S, Luo L, Wei G, Zhang J. Chin J Catal, 2020, 41: 1698–1705

    Article  CAS  Google Scholar 

  19. Sheng W, Zhuang Z, Gao M, Zheng J, Chen JG, Yan Y. Nat Commun, 2015, 6: 5848

    Article  CAS  PubMed  Google Scholar 

  20. Danilovic N, Subbaraman R, Strmcnik D, Chang KC, Paulikas AP, Stamenkovic VR, Markovic NM. Angew Chem Int Ed, 2012, 51: 12495–12498

    Article  CAS  Google Scholar 

  21. Wang B, Huang H, Huang M, Yan P, Isimjan TT, Yang X. Sci China Chem, 2020, 63: 841–849

    Article  CAS  Google Scholar 

  22. Wang Z, Shen K, Chen L, Li Y. Sci China Chem, 2022, 65: 619–629

    Article  CAS  Google Scholar 

  23. Zhang Z, Ni L, Liu H, Zhao ZL, Yuan XZ, Li H. Sci China Chem, 2022, 65: 611–618

    Article  CAS  Google Scholar 

  24. Sakaushi K. Faraday Discuss, 2020, 221: 428–448

    Article  CAS  Google Scholar 

  25. Xue S, Garlyyev B, Watzele S, Liang Y, Fichtner J, Pohl MD, Bandarenka AS. ChemElectroChem, 2018, 5: 2326–2329

    Article  CAS  Google Scholar 

  26. Jaksic M, Johansen B, Tunold R. Int J Hydrogen Energy, 1993, 18: 817–837

    Article  CAS  Google Scholar 

  27. Zhou J, Zu Y, Bard AJ. J Electroanal Chem, 2000, 491: 22–29

    Article  CAS  Google Scholar 

  28. Durst J, Simon C, Siebel A, Rheinländer PJ, Schuler T, Hanzlik M, Herranz J, Hasché F, Gasteiger HA. ECS Trans, 2014, 64: 1069–1080

    Article  CAS  Google Scholar 

  29. Wang J, Xu F, Jin H, Chen Y, Wang Y. Adv Mater, 2017, 29: 1605838

    Article  Google Scholar 

  30. Conway BE, Bai L. Electrochim Acta, 1986, 31: 1013–1024

    Article  CAS  Google Scholar 

  31. Sheng W, Gasteiger HA, Shao-Horn Y. J Electrochem Soc, 2010, 157: B1529

    Article  CAS  Google Scholar 

  32. Subbaraman R, Tripkovic D, Strmcnik D, Chang KC, Uchimura M, Paulikas AP, Stamenkovic V, Markovic NM. Science, 2011, 334: 1256–1260

    Article  CAS  PubMed  Google Scholar 

  33. Auinger M, Katsounaros I, Meier JC, Klemm SO, Biedermann PU, Topalov AA, Rohwerder M, Mayrhofer KJJ. Phys Chem Chem Phys, 2011, 13: 16384–16394

    Article  CAS  PubMed  Google Scholar 

  34. Scatena LF, Brown MG, Richmond GL. Science, 2001, 292: 908–912

    Article  CAS  PubMed  Google Scholar 

  35. Chen YX, Zou SZ, Huang KQ, Tian ZQ. J Raman Spectrosc, 1998, 29: 749–756

    Article  CAS  Google Scholar 

  36. Velasco-Velez JJ, Wu CH, Pascal TA, Wan LF, Guo J, Prendergast D, Salmeron M. Science, 2014, 346: 831–834

    Article  CAS  PubMed  Google Scholar 

  37. Laursen AB, Varela AS, Dionigi F, Fanchiu H, Miller C, Trinhammer OL, Rossmeisl J, Dahl S. J Chem Educ, 2012, 89: 1595–1599

    Article  CAS  Google Scholar 

  38. Skúlason E, Tripkovic V, Björketun ME, Gudmundsdóttir S, Karlberg G, Rossmeisl J, Bligaard T, Jónsson H, Nørskov JK. J Phys Chem C, 2010, 114: 18182–18197

    Article  Google Scholar 

  39. Zeradjanin AR, Polymeros G, Toparli C, Ledendecker M, Hodnik N, Erbe A, Rohwerder M, La Mantia F. Phys Chem Chem Phys, 2020, 22: 8768–8780

    Article  CAS  PubMed  Google Scholar 

  40. Yang B, Sharkas K, Gagliardi L, Truhlar DG. Catal Sci Technol, 2019, 9: 7003–7015

    Article  CAS  Google Scholar 

  41. Elbert K, Hu J, Ma Z, Zhang Y, Chen G, An W, Liu P, Isaacs HS, Adzic RR, Wang JX. ACS Catal, 2015, 5: 6764–6772

    Article  CAS  Google Scholar 

  42. Chen X, McCrum IT, Schwarz KA, Janik MJ, Koper MTM. Angew Chem, 2017, 129: 15221–15225

    Article  Google Scholar 

  43. van der Niet MJTC, Garcia-Araez N, Hernández J, Feliu JM, Koper MTM. Catal Today, 2013, 202: 105–113

    Article  CAS  Google Scholar 

  44. Zheng J, Nash J, Xu B, Yan Y. J Electrochem Soc, 2018, 165: H27–H29

    Article  CAS  Google Scholar 

  45. Cheng T, Wang L, Merinov BV, Goddard III WA. J Am Chem Soc, 2018, 140: 7787–7790

    Article  CAS  PubMed  Google Scholar 

  46. Liu Y, Li W, Wu H, Lu S. Acta Physico Chim Sin, 2020, 0: 2009082–0

    Article  Google Scholar 

  47. Zhang Q, Jiang Z, Tackett BM, Denny SR, Tian B, Chen X, Wang B, Chen JG. ACS Catal, 2019, 9: 2415–2422

    Article  CAS  Google Scholar 

  48. Zhang Q, Tackett BM, Wu Q, Chen JG. ChemElectroChem, 2016, 3: 1686–1693

    Article  CAS  Google Scholar 

  49. Michalsky R, Zhang YJ, Peterson AA. ACS Catal, 2014, 4: 1274–1278

    Article  CAS  Google Scholar 

  50. Bouzid A, Pasquarello A. J Phys Chem Lett, 2018, 9: 1880–1884

    Article  CAS  PubMed  Google Scholar 

  51. Wei Y, Xu G, Wei Y, Ji L, Wang T, Liu Z, Wang S. Sci China Mater, 2022, doi:https://doi.org/10.1007/s40843-022-2001-7

  52. Ledezma-Yanez I, Wallace WDZ, Sebastián-Pascual P, Climent V, Feliu JM, Koper MTM. Nat Energy, 2017, 2: 17031

    Article  CAS  Google Scholar 

  53. Gomez R, Fernandez-Vega A, Feliu JM, Aldaz A. J Phys Chem, 1993, 97: 4769–4776

    Article  CAS  Google Scholar 

  54. Rebollar L, Intikhab S, Snyder JD, Tang MH. J Phys Chem Lett, 2020, 11: 2308–2313

    Article  CAS  PubMed  Google Scholar 

  55. Dubouis N, Serva A, Berthin R, Jeanmairet G, Porcheron B, Salager E, Salanne M, Grimaud A. Nat Catal, 2020, 3: 656–663

    Article  CAS  Google Scholar 

  56. Wei C, Xu ZJ. Chin J Catal, 2022, 43: 148–157

    Article  CAS  Google Scholar 

  57. Tian B, Gao W, Ning X, Wu Y, Lu G. Appl Catal B-Environ, 2019, 249: 138–146

    Article  CAS  Google Scholar 

  58. Cai L, Lin Z, Wang M, Pan F, Chen J, Wang Y, Shen X, Chai Y. J Mater Chem A, 2017, 5: 24091–24097

    Article  CAS  Google Scholar 

  59. Liu C, Gong T, Zhang J, Zheng X, Mao J, Liu H, Li Y, Hao Q. Appl Catal B-Environ, 2019, 262: 118245

    Article  Google Scholar 

  60. Dubouis N, Grimaud A. Chem Sci, 2019, 10: 9165–9181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Deng M, Li M, Jiang S, Nie Y, Li L, Wei Z. J Phys Chem Lett, 2022, 13: 1069–1076

    Article  CAS  PubMed  Google Scholar 

  62. Zhao X, Zhang Z, Cao X, Hu J, Wu X, Ng AYR, Lu GP, Chen Z. Appl Catal B-Environ, 2020, 260: 118156

    Article  CAS  Google Scholar 

  63. Zheng Y, Jiao Y, Vasileff A, Qiao SZ. Angew Chem Int Ed, 2017, 57: 7568–7579

    Article  Google Scholar 

  64. Sun J, Xu W, Lv C, Zhang L, Shakouri M, Peng Y, Wang Q, Yang X, Yuan D, Huang M, Hu Y, Yang D, Zhang L. Appl Catal B-Environ, 2021, 286: 119882

    Article  CAS  Google Scholar 

  65. Shang X, Zhang XY, Xie JY, Dong B, Chi JQ, Guo BY, Yang M, Chai YM, Liu CG. Appl Catal B-Environ, 2019, 258: 117984

    Article  CAS  Google Scholar 

  66. Fu L, Yang F, Hu Y, Li Y, Chen S, Luo W. Sci Bull, 2020, 65: 1735–1742

    Article  CAS  Google Scholar 

  67. Qin XP, Zhu SQ, Zhang LL, Sun SH, Shao MH. J Electrochem, 2021, 27: 185–194

    CAS  Google Scholar 

  68. Cheng PF, Feng T, Liu ZW, Wu DY, Yang J. Chin J Catal, 2019, 40: 1147–1152

    Article  CAS  Google Scholar 

  69. Bligaard T, Nørskov JK, Dahl S, Matthiesen J, Christensen CH, Sehested J. J Catal, 2004, 224: 206–217

    Article  CAS  Google Scholar 

  70. Zhang B, Wang J, Liu J, Zhang L, Wan H, Miao L, Jiang J. ACS Catal, 2019, 9: 9332–9338

    Article  CAS  Google Scholar 

  71. Subbaraman R, Tripkovic D, Chang KC, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM. Nat Mater, 2012, 11: 550–557

    Article  CAS  PubMed  Google Scholar 

  72. Ruqia B, Choi SI. ChemSusChem, 2018, 11: 2643–2653

    Article  CAS  PubMed  Google Scholar 

  73. Liu E, Li J, Jiao L, Doan HTT, Liu Z, Zhao Z, Huang Y, Abraham KM, Mukerjee S, Jia Q. J Am Chem Soc, 2019, 141: 3232–3239

    Article  CAS  PubMed  Google Scholar 

  74. Luo Z, Zhang H, Yang Y, Wang X, Li Y, Jin Z, Jiang Z, Liu C, Xing W, Ge J. Nat Commun, 2020, 11: 1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Israelachvili JN. Q Rev Biol, 2011, 2: 59–65

    Google Scholar 

  76. Yao M, Wang B, Sun B, Luo L, Chen Y, Wang J, Wang N, Komarneni S, Niu X, Hu W. Appl Catal B-Environ, 2021, 280: 119451

    Article  CAS  Google Scholar 

  77. Gong M, Zhou W, Tsai MC, Zhou J, Guan M, Lin MC, Zhang B, Hu Y, Wang DY, Yang J, Pennycook SJ, Hwang BJ, Dai H. Nat Commun, 2014, 5: 4695

    Article  CAS  PubMed  Google Scholar 

  78. Strmcnik D, Lopes PP, Genorio B, Stamenkovic VR, Markovic NM. Nano Energy, 2016, 29: 29–36

    Article  CAS  Google Scholar 

  79. Li Y, Guo Y, Yang S, Li Q, Chen S, Lu B, Zou H, Liu X, Tong X, Yang H. ACS Appl Mater Interfaces, 2021, 13: 5052–5060

    Article  CAS  PubMed  Google Scholar 

  80. Baek DS, Jung GY, Seo B, Kim JC, Lee HW, Shin TJ, Jeong HY, Kwak SK, Joo SH. Adv Funct Mater, 2019, 29: 1901217

    Article  Google Scholar 

  81. Alinezhad A, Gloag L, Benedetti TM, Cheong S, Webster RF, Roelsgaard M, Iversen BB, Schuhmann W, Gooding JJ, Tilley RD. J Am Chem Soc, 2019, 141: 16202–16207

    Article  CAS  PubMed  Google Scholar 

  82. Li M, Duanmu K, Wan C, Cheng T, Zhang L, Dai S, Chen W, Zhao Z, Li P, Fei H, Zhu Y, Yu R, Luo J, Zang K, Lin Z, Ding M, Huang J, Sun H, Guo J, Pan X, Goddard III WA, Sautet P, Huang Y, Duan X. Nat Catal, 2019, 2: 495–503

    Article  CAS  Google Scholar 

  83. Peng L, Liao M, Zheng X, Nie Y, Zhang L, Wang M, Xiang R, Wang J, Li L, Wei Z. Chem Sci, 2020, 11: 2487–2493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu T, Ma X, Liu D, Hao S, Du G, Ma Y, Asiri AM, Sun X, Chen L. ACS Catal, 2017, 7: 98–102

    Article  CAS  Google Scholar 

  85. Liu T, Liu D, Qu F, Wang D, Zhang L, Ge R, Hao S, Ma Y, Du G, Asiri AM, Chen L, Sun X. Adv Energy Mater, 2017, 7: 1700020

    Article  Google Scholar 

  86. McCrum IT, Koper MTM. Nat Energy, 2020, 5: 891–899

    Article  CAS  Google Scholar 

  87. Chen Y, Wang X, Lao M, Rui K, Zheng X, Yu H, Ma J, Dou SX, Sun W. Nano Energy, 2019, 64: 103918

    Article  CAS  Google Scholar 

  88. Intikhab S, Snyder JD, Tang MH. ACS Catal, 2017, 7: 8314–8319

    Article  CAS  Google Scholar 

  89. Rebollar L, Intikhab S, Snyder JD, Tang MH. J Electrochem Soc, 2018, 165: J3209–J3221

    Article  CAS  Google Scholar 

  90. Jiang YX, Li JF, Wu DY, Yang ZL, Ren B, Hu JW, Chow YL, Tian ZQ. Chem Commun, 2007, 4608–4610

  91. Gázquez JL. J Phys Chem A, 1997, 101: 4657–4659

    Article  Google Scholar 

  92. del Rosario JAD, Li G, Labata MFM, Ocon JD, Chuang PYA. Appl Catal B-Environ, 2021, 288: 119981

    Article  CAS  Google Scholar 

  93. Weber DJ, Janssen M, Oezaslan M. J Electrochem Soc, 2019, 166: F66–F73

    Article  CAS  Google Scholar 

  94. Guo J, Meng X, Chen J, Peng J, Sheng J, Li XZ, Xu L, Shi JR, Wang E, Jiang Y. Nat Mater, 2014, 13: 184–189

    Article  CAS  PubMed  Google Scholar 

  95. Zhao X, Gunji T, Kaneko T, Yoshida Y, Takao S, Higashi K, Uruga T, He W, Liu J, Zou Z. J Am Chem Soc, 2019, 141: 8516–8526

    Article  CAS  PubMed  Google Scholar 

  96. Li CY, Le JB, Wang YH, Chen S, Yang ZL, Li JF, Cheng J, Tian ZQ. Nat Mater, 2019, 18: 697–701

    Article  CAS  PubMed  Google Scholar 

  97. Otani M, Hamada I, Sugino O, Morikawa Y, Okamoto Y, Ikeshoji T. Phys Chem Chem Phys, 2008, 10: 3609–3612

    Article  CAS  PubMed  Google Scholar 

  98. Dunwell M, Yan Y, Xu B. Curr Opin Chem Eng, 2018, 20: 151–158

    Article  Google Scholar 

  99. Zheng J, Sheng W, Zhuang Z, Xu B, Yan Y. Sci Adv, 2016, 2: e1501602

    Article  PubMed  PubMed Central  Google Scholar 

  100. Jiang Y, Huang J, Mao B, An T, Wang J, Cao M. Appl Catal B-Environ, 2021, 293: 120220

    Article  CAS  Google Scholar 

  101. Liu E, Jiao L, Li J, Stracensky T, Sun Q, Mukerjee S, Jia Q. Energy Environ Sci, 2020, 13: 3064–3074

    Article  CAS  Google Scholar 

  102. Nazmutdinov RR, Probst M, Heinzinger K. J Electroanal Chem, 1994, 369: 227–231

    Article  CAS  Google Scholar 

  103. Garcia-Araez N, Climent V, Feliu J. J Phys Chem C, 2009, 113: 9290–9304

    Article  CAS  Google Scholar 

  104. Osawa M, Tsushima M, Mogami H, Samjeské G, Yamakata A. J Phys Chem C, 2008, 112: 4248–4256

    Article  CAS  Google Scholar 

  105. Intikhab S, Rebollar L, Fu X, Yue Q, Li Y, Kang Y, Tang MH, Snyder JD. Nano Energy, 2019, 64: 103963

    Article  CAS  Google Scholar 

  106. García-Aráez N, Climent V, Feliu JM. J Am Chem Soc, 2008, 130: 3824–3833

    Article  PubMed  Google Scholar 

  107. Rossmeisl J, Chan K, Ahmed R, Tripković V, Björketun ME. Phys Chem Chem Phys, 2013, 15: 10321–10325

    Article  CAS  PubMed  Google Scholar 

  108. Wang YH, Zheng S, Yang WM, Zhou RY, He QF, Radjenovic P, Dong JC, Li S, Zheng J, Yang ZL, Attard G, Pan F, Tian ZQ, Li JF. Nature, 2021, 600: 81–85

    Article  CAS  PubMed  Google Scholar 

  109. Shen LF, Lu BA, Li YY, Liu J, Huang-Fu ZC, Peng H, Ye JY, Qu XM, Zhang JM, Li G, Cai WB, Jiang YX, Sun SG. Angew Chem Int Ed, 2020, 59: 22397–22402

    Article  CAS  Google Scholar 

  110. Le JB, Chen A, Li L, Xiong JF, Lan J, Liu YP, Iannuzzi M, Cheng J. JACS Au, 2021, 1: 569–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sarabia FJ, Sebastián-Pascual P, Koper MTM, Climent V, Feliu JM. ACS Appl Mater Interfaces, 2019, 11: 613–623

    Article  CAS  PubMed  Google Scholar 

  112. Yu X, Yu ZY, Zhang XL, Zheng YR, Duan Y, Gao Q, Wu R, Sun B, Gao MR, Wang G, Yu SH. J Am Chem Soc, 2019, 141: 7537–7543

    Article  CAS  PubMed  Google Scholar 

  113. Kumar A, Bui VQ, Lee J, Jadhav AR, Hwang Y, Kim MG, Kawazoe Y, Lee H. ACS Energy Lett, 2021, 6: 354–363

    Article  CAS  Google Scholar 

  114. Deng M, Yang H, Peng L, Zhang L, Tan L, He G, Shao M, Li L, Wei Z. J Energy Chem, 2022, 74: 111–120

    Article  Google Scholar 

  115. Zhang J, Wang T, Liu P, Liao Z, Liu S, Zhuang X, Chen M, Zschech E, Feng X. Nat Commun, 2017, 8: 15437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xue S, Liu Z, Ma C, Cheng HM, Ren W. Sci Bull, 2020, 65: 123–130

    Article  CAS  Google Scholar 

  117. Liu W, Wang X, Wang F, Du K, Zhang Z, Guo Y, Yin H, Wang D. Nat Commun, 2021, 12: 6776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nairan A, Liang C, Chiang SW, Wu Y, Zou P, Khan U, Liu W, Kang F, Guo S, Wu J, Yang C. Energy Environ Sci, 2021, 14: 1594–1601

    Article  CAS  Google Scholar 

  119. Zhou KL, Han CB, Wang Z, Ke X, Wang C, Jin Y, Zhang Q, Liu J, Wang H, Yan H. Adv Sci, 2021, 8: 2100347

    Article  CAS  Google Scholar 

  120. Wang L, Gong N, Zhou Z, Zhang Q, Peng W, Li Y, Zhang F, Fan X. Chin J Catal, 2022, 43: 1176–1183

    Article  CAS  Google Scholar 

  121. Wang Y, Li X, Zhang M, Zhang J, Chen Z, Zheng X, Tian Z, Zhao N, Han X, Zaghib K, Wang Y, Deng Y, Hu W. Adv Mater, 2022, 34: 2107053

    Article  CAS  Google Scholar 

  122. Wen Q, Duan J, Wang W, Huang D, Liu Y, Shi Y, Fang JK, Nie A, Li H, Zhai T. Angew Chem Int Ed, 2022, 61: e202206077

    CAS  Google Scholar 

  123. Luo Y, Tang L, Khan U, Yu Q, Cheng HM, Zou X, Liu B. Nat Commun, 2019, 10: 269

    Article  PubMed  PubMed Central  Google Scholar 

  124. Luo Y, Zhang Z, Yang F, Li J, Liu Z, Ren W, Zhang S, Liu B. Energy Environ Sci, 2021, 14: 4610–4619

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Key R&D Program (2021YFB4000301), the National Natural Science Foundation of China (22090030 and 52021004) and the Start-up Foundation of High-level Talents in Chongqing Technology and Business University (1956041 and 1952035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Li or Zidong Wei.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, C., Deng, M., Li, L. et al. The contribution of water molecules to the hydrogen evolution reaction. Sci. China Chem. 65, 1854–1866 (2022). https://doi.org/10.1007/s11426-022-1371-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1371-x

Keywords

Navigation