Skip to main content
Log in

Reactivity of hydrogen species on oxide surfaces

  • Feature Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Hydrogen species on oxides are widely involved in oxides-catalyzed reactions such as H2/hydrocarbon oxidation, hydrogenation/dehydrogenation, water-gas shift, and water-splitting reactions. Thus identifications of hydrogen species on oxide surfaces and their reactivity are important for fundamental understanding of these oxides-catalyzed reactions. In this Feature Article, we briefly review our research progress on the reactivity of various hydrogen species on oxides, including surface hydroxyl species, hydride species and hydrated protons. We have successfully developed effective strategies of using gas-phase atomic H to controllably create oxygen vacancies and prepare various hydrogen species on oxide model catalysts under ultra-high vacuum (UHV) conditions and using well-defined oxide nanocrystals with different surface structures and oxygen vacancy concentrations to study the H2-oxide interaction under ambient or even higher H2 pressures. Reactivity of various hydrogen species on oxide surfaces has been identified, including local oxygen vacancy-controlled reactivity of OH species, oxygen vacancy-stabilized hydride species, homolytic dissociation of H2 at oxygen vacancies of reduced oxide surfaces into hydride species accompanied by surface oxidation, photoexcited holes-stimulated desorption of hydride species, electron-stimulated desorption of hydride and OH species, and photoexcited electrons-stimulated desorption of hydrated protons. Strong influences of oxygen vacancies in oxides on both stability and reactivity of various hydrogen species on oxide surfaces are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen S, Xiong F, Huang W. Surf Sci Rep, 2019, 74: 100471

    Article  CAS  Google Scholar 

  2. Freund HJ, Heyde M, Kuhlenbeck H, Nilius N, Risse T, Schmidt T, Shaikhutdinov S, Sterrer M. Sci China Chem, 2020, 63: 426–447

    Article  CAS  Google Scholar 

  3. Brown GE, Henrich VE, Casey WH, Clark DL, Eggleston C, Felmy A, Goodman DW, Grätzel M, Maciel G, McCarthy MI, Nealson KH, Sverjensky DA, Toney MF, Zachara JM. Chem Rev, 1999, 99: 77–174

    Article  CAS  PubMed  Google Scholar 

  4. Tsyganenko AA, Filimonov VN. J Mol Structure, 1973, 19: 579–589

    Article  CAS  Google Scholar 

  5. Henrich VE, Cox PA. The Surface Science of Metal Oxides. Cambridge University Press, 1994

  6. Fierro JLG. Metal Oxides: Chemistry and Applications. CRC press, 2005

  7. Copéret C, Estes DP, Larmier K, Searles K. Chem Rev, 2016, 116: 8463–8505

    Article  PubMed  Google Scholar 

  8. Chen HYT, Giordano L, Pacchioni G. J Phys Chem C, 2013, 117: 10623–10629

    Article  CAS  Google Scholar 

  9. Gribov EN, Bertarione S, Scarano D, Lamberti C, Spoto G, Zecchina A. J Phys Chem B, 2004, 108: 16174–16186

    Article  CAS  Google Scholar 

  10. Joubert J, Salameh A, Krakoviack V, Delbecq F, Sautet P, Copéret C, Basset JM. J Phys Chem B, 2006, 110: 23944–23950

    Article  CAS  PubMed  Google Scholar 

  11. Martin D, Duprez D. J Phys Chem B, 1997, 101: 4428–4436

    Article  CAS  Google Scholar 

  12. Meriaudeau P, Primet M. J Mol Catal, 1990, 61: 227–234

    Article  CAS  Google Scholar 

  13. Busca G. J Catal, 1989, 120: 303–313

    Article  CAS  Google Scholar 

  14. Becker T, Hövel S, Kunat M, Boas C, Burghaus U, Wöll C. Surf Sci, 2001, 486: L502–L506

    Article  CAS  Google Scholar 

  15. Dent AL, Kokes RJ. J Phys Chem, 1969, 73: 3781–3790

    Article  CAS  Google Scholar 

  16. Eischens R, Pliskin WA, Low MJD. J Catal, 1962, 1: 180–191

    Article  CAS  Google Scholar 

  17. Wu Z, Xiong F, Wang Z, Huang W. Chin Chem Lett, 2018, 29: 752–756

    Article  CAS  Google Scholar 

  18. Wu Z, Zhang W, Xiong F, Yuan Q, Jin Y, Yang J, Huang W. Phys Chem Chem Phys, 2014, 16: 7051–7507

    Article  CAS  PubMed  Google Scholar 

  19. Huang ZQ, Liu LP, Qi S, Zhang S, Qu Y, Chang CR. ACS Catal, 2018, 8: 546–554

    Article  CAS  Google Scholar 

  20. Riley C, Zhou S, Kunwar D, De La Riva A, Peterson E, Payne R, Gao L, Lin S, Guo H, Datye A. J Am Chem Soc, 2018, 140: 12964–12973

    Article  CAS  PubMed  Google Scholar 

  21. Werner K, Weng X, Calaza F, Sterrer M, Kropp T, Paier J, Sauer J, Wilde M, Fukutani K, Shaikhutdinov S, Freund HJ. J Am Chem Soc, 2017, 139: 17608–17616

    Article  CAS  PubMed  Google Scholar 

  22. Wu Z, Cheng Y, Tao F, Daemen L, Foo GS, Nguyen L, Zhang X, Beste A, Ramirez-Cuesta AJ. J Am Chem Soc, 2017, 139: 9721–9727

    Article  CAS  PubMed  Google Scholar 

  23. Thiel PA, Madey TE. Surf Sci Rep, 1987, 7: 211–385

    Article  CAS  Google Scholar 

  24. Henderson MA. Surf Sci Rep, 2002, 46: 1–308

    Article  CAS  Google Scholar 

  25. Huang W. Sci Sin-Chim, 2018, 48: 1076–1093

    Article  Google Scholar 

  26. Huang W. Surface Oxygen Vacancy-Controlled Reactivity of Hydroxyl Groups on Transitional Metal Oxide Surfaces. In: Wandelt, K., Eds. Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Vol. 3. Elsevier, 2018. 666–672

  27. Wu L, Fu C, Huang W. Phys Chem Chem Phys, 2020, 22: 9875–9909

    Article  CAS  PubMed  Google Scholar 

  28. Weiss W, Ranke W. Prog Surf Sci, 2002, 70: 1–151

    Article  CAS  Google Scholar 

  29. Huang W, Ranke W, Schlögl R. J Phys Chem B, 2005, 109: 9202–9204

    Article  CAS  PubMed  Google Scholar 

  30. Huang W, Ranke W, Schlögl R. J Phys Chem C, 2007, 111: 2198–2204

    Article  CAS  Google Scholar 

  31. Xu L, Zhang W, Zhang Y, Wu Z, Chen B, Jiang Z, Ma Y, Yang J, Huang W. J Phys Chem C, 2011, 115: 6815–6824

    Article  CAS  Google Scholar 

  32. Huang W, Ranke W. Surf Sci, 2006, 600: 793–802

    Article  CAS  Google Scholar 

  33. Chen B, Ma Y, Ding L, Xu L, Wu Z, Yuan Q, Huang W. J Phys Chem C, 2013, 117: 5800–5810

    Article  CAS  Google Scholar 

  34. Xu L, Wu Z, Zhang W, Jin Y, Yuan Q, Ma Y, Huang W. J Phys Chem C, 2012, 116: 22921–22929

    Article  CAS  Google Scholar 

  35. Xu L, Wu Z, Zhang Y, Chen B, Jiang Z, Ma Y, Huang W. J Phys Chem C, 2011, 115: 14290–14299

    Article  CAS  Google Scholar 

  36. Xu L, Ma Y, Zhang Y, Jiang Z, Huang W. J Am Chem Soc, 2009, 131: 16366–16367

    Article  CAS  PubMed  Google Scholar 

  37. Xu L, Wu Z, Jin Y, Ma Y, Huang W. Phys Chem Chem Phys, 2013, 15: 12068

    Article  CAS  PubMed  Google Scholar 

  38. Jin Y, Sun G, Xiong F, Ding L, Huang W. J Phys Chem C, 2016, 120: 9845–9851

    Article  CAS  Google Scholar 

  39. Jin Y, Sun G, Xiong F, Ding L, Huang W. Chem Eur J, 2015, 21: 4252–4256

    Article  CAS  PubMed  Google Scholar 

  40. Cao T, You R, Zhang X, Chen S, Li D, Zhang Z, Huang W. Phys Chem Chem Phys, 2018, 20: 9659–9670

    Article  CAS  PubMed  Google Scholar 

  41. Cao T, You R, Li Z, Zhang X, Li D, Chen S, Zhang Z, Huang W. Appl Surf Sci, 2020, 501: 144120

    Article  CAS  Google Scholar 

  42. Henrich VE. Rep Prog Phys, 1985, 48: 1481–1541

    Article  CAS  Google Scholar 

  43. Freund HJ, Kuhlenbeck H, Staemmler V. Rep Prog Phys, 1996, 59: 283–347

    Article  CAS  Google Scholar 

  44. Ganduglia-Pirovano MV, Hofmann A, Sauer J. Surf Sci Rep, 2007, 62: 219–270

    Article  CAS  Google Scholar 

  45. Huang W. Top Catal, 2013, 56: 1363–1376

    Article  CAS  Google Scholar 

  46. Huang W, Gao Y. Catal Sci Technol, 2014, 4: 3772–3784

    Article  CAS  Google Scholar 

  47. Huang W. Acc Chem Res, 2016, 49: 520–527

    Article  CAS  PubMed  Google Scholar 

  48. Huang W, Sun G, Cao T. Chem Soc Rev, 2017, 46: 1977–2000

    Article  CAS  PubMed  Google Scholar 

  49. Gao Y, Li R, Chen S, Luo L, Cao T, Huang W. Phys Chem Chem Phys, 2015, 17: 31862–31871

    Article  CAS  PubMed  Google Scholar 

  50. Bond GC, Thompson DT. Gold Bull, 2000, 33: 41–50

    Article  CAS  Google Scholar 

  51. Gao Y, Wang W, Chang S, Huang W. ChemCatChem, 2013, 5: 3610–3620

    Article  CAS  Google Scholar 

  52. Qian K, Zhang W, Sun H, Fang J, He B, Ma Y, Jiang Z, Wei S, Yang J, Huang W. J Catal, 2011, 277: 95–103

    Article  CAS  Google Scholar 

  53. Jin Y, Sun G, Xiong F, Wang Z, Huang W. J Phys Chem C, 2016, 120: 26968–26973

    Article  CAS  Google Scholar 

  54. Ding L, Xiong F, Jin Y, Wang Z, Sun G, Huang W. Phys Chem Chem Phys, 2016, 18: 32551–32559

    Article  CAS  PubMed  Google Scholar 

  55. Sun G, Jin Y, Zhang Z, Wang Z, Chai P, Xiong F, Huang W. J Phys Chem C, 2018, 122: 22530–22537

    Article  CAS  Google Scholar 

  56. Fernández-Torre D, Carrasco J, Ganduglia-Pirovano MV, Pérez R. J Chem Phys, 2014, 141: 014703

    Article  PubMed  Google Scholar 

  57. García-Melchor M, Bellarosa L, López N. ACS Catal, 2014, 4: 4015–4020

    Article  Google Scholar 

  58. García-Melchor M, López N. J Phys Chem C, 2014, 118: 10921–10926

    Article  Google Scholar 

  59. Negreiros FR, Camellone MF, Fabris S. JPhys Chem C, 2015, 119: 21567–21573

    Article  CAS  Google Scholar 

  60. Pfau A, Schierbaum KD. Surf Sci, 1994, 321: 71–80

    Article  CAS  Google Scholar 

  61. Chen X, Liu L, Yu PY, Mao SS. Science, 2011, 331: 746–750

    Article  CAS  PubMed  Google Scholar 

  62. Du Y, Petrik NG, Deskins NA, Wang Z, Henderson MA, Kimmel GA, Lyubinetsky I. Phys Chem Chem Phys, 2012, 14: 3066–3074

    Article  CAS  PubMed  Google Scholar 

  63. Henderson MA, Lyubinetsky I. Chem Rev, 2013, 113: 4428–4455

    Article  CAS  PubMed  Google Scholar 

  64. Yin XL, Calatayud M, Qiu H, Wang Y, Birkner A, Minot C, Wöll C. ChemPhysChem, 2008, 9: 253–256

    Article  CAS  PubMed  Google Scholar 

  65. Enevoldsen GH, Pinto HP, Foster AS, Jensen MCR, Hofer WA, Hammer B, Lauritsen JV, Besenbacher F. Phys Rev Lett, 2009, 102: 136103

    Article  PubMed  Google Scholar 

  66. Suzuki S, Fukui KI, Onishi H, Iwasawa Y. Phys Rev Lett, 2000, 84: 2156–2159

    Article  CAS  PubMed  Google Scholar 

  67. Pan JM, Maschhoff BL, Diebold U, Madey TE. J Vacuum Sci Tech A-Vacuum Surfs Films, 1992, 10: 2470–2476

    Article  CAS  Google Scholar 

  68. Vilé G, Bridier B, Wichert J, Pérez-Ramírez J. Angew Chem Int Ed, 2012, 51: 8620–8623

    Article  Google Scholar 

  69. Schweke D, Shelly L, Ben David R, Danon A, Kostirya N, Hayun S. J Phys Chem C, 2020, 124: 6180–6187

    Article  CAS  Google Scholar 

  70. Li Z, Werner K, Qian K, You R, Plucienik A, Jia A, Wu L, Zhang L, Pan H, Kuhlenbeck H, Shaikhutdinov S, Huang W, Freund HJ. Angew Chem Int Ed, 2019, 58: 14686–14693

    Article  CAS  Google Scholar 

  71. Li Z, Werner K, Chen L, Jia A, Qian K, Zhong JQ, You R, Wu L, Zhang L, Pan H, Wu XP, Gong XQ, Shaikhutdinov S, Huang W, Freund HJ. Chem Eur J, 2020, doi: https://doi.org/10.1002/chem.202005374

  72. Syzgantseva OA, Calatayud M, Minot C. J Phys Chem C, 2012, 116: 6636–6644

    Article  CAS  Google Scholar 

  73. Noei H, Wöll C, Muhler M, Wang Y. Appl Catal A-General, 2011, 391: 31–35

    Article  CAS  Google Scholar 

  74. Ghiotti G, Chiorino A, Boccuzzi F. Surf Sci, 1993, 287–288: 228–234

    Article  Google Scholar 

  75. Noei H, Qiu H, Wang Y, Muhler M, Wöll C. ChemPhysChem, 2010, 11: 3604–3607

    Article  CAS  PubMed  Google Scholar 

  76. Boccuzzi F, Borello E, Zecchina A, Bossi A, Camia M. J Catal, 1978, 51: 150–159

    Article  CAS  Google Scholar 

  77. Griffin G, Yates JT. J Catal, 1982, 73: 396–405

    Article  CAS  Google Scholar 

  78. Zhang L, Zhang X, Qian K, Li Z, Cheng Y, Daemen LL, Wu Z, Huang W. J Energy Chem, 2020, 50: 351–357

    Article  Google Scholar 

  79. Wagner FT, Moylan TE. Surf Sci, 1988, 206: 187–202

    Article  CAS  Google Scholar 

  80. Kizhakevariam N, Stuve EM. Surf Sci, 1992, 275: 223–236

    Article  CAS  Google Scholar 

  81. Pan M, Pozun ZD, Yu WY, Henkelman G, Mullins CB. J Phys Chem Lett, 2012, 3: 1894–1899

    Article  CAS  PubMed  Google Scholar 

  82. Kim Y, Shin S, Kang H. Angew Chem Int Ed, 2015, 54: 7626–7630

    Article  CAS  Google Scholar 

  83. Chen N, Blowers P, Masel RI. Surf Sci, 1999, 419: 150–157

    Article  CAS  Google Scholar 

  84. Wang Q, Puntambekar A, Chakrapani V. J Phys Chem C, 2017, 121: 13151–13163

    Article  CAS  Google Scholar 

  85. Xiong F, Wang Z, Wu Z, Sun G, Xu H, Chai P, Huang W. Sci China Chem, 2019, 62: 199–204

    Article  CAS  Google Scholar 

  86. Das D, Veziroglu TN. Int J Hydrogen Energy, 2001, 26: 13–28

    Article  CAS  Google Scholar 

  87. Onda K, Li B, Zhao J, Jordan KD, Yang J, Petek H. Science, 2005, 308: 1154–1158

    Article  CAS  PubMed  Google Scholar 

  88. Azzam K, Babich I, Seshan K, Lefferts L. J Catal, 2007, 251: 153–162

    Article  CAS  Google Scholar 

  89. Leung DYC, Fu X, Wang C, Ni M, Leung MKH, Wang X, Fu X. ChemSusChem, 2010, 3: 681–694

    Article  CAS  PubMed  Google Scholar 

  90. Yang J, Wang D, Han H, Li C. Acc Chem Res, 2013, 46: 1900–1909

    Article  CAS  PubMed  Google Scholar 

  91. Ma Y, Wang X, Jia Y, Chen X, Han H, Li C. Chem Rev, 2014, 114: 9987–10043

    Article  CAS  PubMed  Google Scholar 

  92. Chen X, Shen S, Guo L, Mao SS. Chem Rev, 2010, 110: 6503–6570

    Article  CAS  PubMed  Google Scholar 

  93. Hodgson A, Haq S. Surf Sci Rep, 2009, 64: 381–451

    Article  CAS  Google Scholar 

  94. Carrasco J, Hodgson A, Michaelides A. Nat Mater, 2012, 11: 667–674

    Article  CAS  PubMed  Google Scholar 

  95. Skorodumova NV, Simak SI, Kochetov AE, Johansson B. Phys Rev B, 2007, 75: 035109

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by National Key R&D Program of MOST (2017YFB0602205), the National Natural Science Foundation of China (21525313, 91745202, 91945301, U1930203), the Chinese Academy of Sciences, and the Changjiang Scholars Program of Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixin Huang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Huang, W. Reactivity of hydrogen species on oxide surfaces. Sci. China Chem. 64, 1076–1087 (2021). https://doi.org/10.1007/s11426-020-9953-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9953-y

Keywords

Navigation