Skip to main content
Log in

Rapid and selective uranium extraction from aqueous solution under visible light in the absence of solid photocatalyst

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Extraction of uranium from radioactive waste-water is of significant importance for environmental protection and the recovery of uranium resource. Different from the previous reports to use the solid absorbent/photocatalyst for U(VI) removal, herein, we proposed a new eco-friendly method for the rapid and selective extraction of uranium from aqueous solutions under visible light without solid materials. At optimal pH value and in the presence of organics like alcohols, the U(VI) could be extracted efficiently to form brown uranium solid over wide uranium concentrations under anaerobic condition and visible light, by utilizing the excitation of the given U(VI) species. With comprehensive modelling of the electronic ultraviolet-visible (UV-Vis) properties, it is proved that pH adjusting towards U(VI) could induce efficient ligand-to-metal-charge-transfer (LMCT) within the uranyl complex under visible light and the reduction of U(VI) to form U(V), which can be transformed into U(IV) via disproportionation reaction. The resulting U(IV) in solid phase makes the extraction much more convenient in operation. More importantly, the excellent selectivity for uranium extraction over interfering alkali metal ions, transition metal ions and the lanthanide metal ions shows a powerful application potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu C, Zhang P, Jiang S, Wu X, Song S, Zhu M, Lou Z, Li Z, Liu F, Liu Y, Wang Y, Le Z. Appl Catal B-Environ, 2017, 200: 378–385

    Article  CAS  Google Scholar 

  2. Craft ES, Abu-Qare AW, Flaherty MM, Garofolo MC, Rincavage HL, Abou-Donia MB. J Toxicol Environ Health Part B, 2004, 7: 297–317

    Article  CAS  Google Scholar 

  3. Yue YF, Sun XG, Mayes RT, Kim J, Fulvio PF, Qiao ZA, Brown S, Tsouris C, Oyola Y, Dai S. Sci China Chem, 2013, 56: 1510–1515

    Article  CAS  Google Scholar 

  4. Kou S, Yang Z, Sun F. ACS Appl Mater Interfaces, 2017, 9: 2035–2039

    Article  CAS  PubMed  Google Scholar 

  5. Liu X, Pang H, Liu X, Li Q, Zhang N, Mao L, Qiu M, Hu B, Yang H, Wang X. Innovation, 2021, 2: 100076

    Google Scholar 

  6. Tobilko V, Spasonova L, Kovalchuk I, Kornilovych B, Kholodko Y. Colloids Interfaces, 2019, 3: 41

    Article  CAS  Google Scholar 

  7. Hu B, Wang H, Liu R, Qiu M. Chemosphere, 2021, 274: 129743

    Article  CAS  PubMed  Google Scholar 

  8. Liu X, Sun J, Xu X, Alsaedi A, Hayat T, Li J. Chem Eng J, 2019, 360: 941–950

    Article  CAS  Google Scholar 

  9. Zhao G, Wen T, Yang X, Yang S, Liao J, Hu J, Shao D, Wang X. Dalton Trans, 2012, 41: 6182–6188

    Article  CAS  PubMed  Google Scholar 

  10. Li S, Yang P, Liu X, Zhang J, Xie W, Wang C, Liu C, Guo Z. J Mater Chem A, 2019, 7: 16902–16911

    Article  CAS  Google Scholar 

  11. Li J, Wang X, Zhao G, Chen C, Chai Z, Alsaedi A, Hayat T, Wang X. Chem Soc Rev, 2018, 47: 2322–2356

    Article  CAS  PubMed  Google Scholar 

  12. Zhong X, Liang W, Wang H, Xue C, Hu B. J Hazard Mater, 2021, 407: 124729

    Article  CAS  PubMed  Google Scholar 

  13. Zhong X, Lu Z, Liang W, Guo X, Hu B. Environ Sci-Nano, 2020, 7: 3303–3317

    Article  CAS  Google Scholar 

  14. Zhang H, Liu W, Li A, Zhang D, Li X, Zhai F, Chen L, Chen L, Wang Y, Wang S. Angew Chem Int Ed, 2019, 58: 16110–16114

    Article  CAS  Google Scholar 

  15. Liu W, Dai X, Bai Z, Wang Y, Yang Z, Zhang L, Xu L, Chen L, Li Y, Gui D, Diwu J, Wang J, Zhou R, Chai Z, Wang S. Environ Sci Technol, 2017, 51: 3911–3921

    Article  CAS  PubMed  Google Scholar 

  16. Zheng T, Yang Z, Gui D, Liu Z, Wang X, Dai X, Liu S, Zhang L, Gao Y, Chen L, Sheng D, Wang Y, Diwu J, Wang J, Zhou R, Chai Z, Albrecht-Schmitt TE, Wang S. Nat Commun, 2017, 8: 15369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sun Q, Aguila B, Earl LD, Abney CW, Wojtas L, Thallapally PK, Ma S. Adv Mater, 2018, 30: 1705479

    Article  CAS  Google Scholar 

  18. Chouyyok W, Pittman JW, Warner MG, Nell KM, Clubb DC, Gill GA, Addleman RS. Dalton Trans, 2016, 45: 11312–11325

    Article  CAS  PubMed  Google Scholar 

  19. Luo W, Xiao G, Tian F, Richardson JJ, Wang Y, Zhou J, Guo J, Liao X, Shi B. Energy Environ Sci, 2019, 12: 607–614

    Article  CAS  Google Scholar 

  20. Zhang H, Zhang L, Han X, Kuang L, Hua D. Ind Eng Chem Res, 2018, 57: 1662–1670

    Article  CAS  Google Scholar 

  21. Sun Y, Yang S, Chen Y, Ding C, Cheng W, Wang X. Environ Sci Technol, 2015, 49: 4255–4262

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Q, Zhao D, Feng S, Wang Y, Jin J, Alsaedi A, Hayat T, Chen C. J Colloid Interface Sci, 2019, 552: 735–743

    Article  CAS  PubMed  Google Scholar 

  23. Xie J, Wang J, Lin J, Zhou X. Environ Pollution, 2018, 242: 659–666

    Article  CAS  Google Scholar 

  24. Deng H, Li Z, Wang L, Yuan L, Lan J, Chang Z, Chai Z, Shi W. ACS Appl Nano Mater, 2019, 2: 2283–2294

    Article  CAS  Google Scholar 

  25. Li ZJ, Huang ZW, Guo WL, Wang L, Zheng LR, Chai ZF, Shi WQ. Environ Sci Technol, 2017, 51: 5666–5674

    Article  CAS  PubMed  Google Scholar 

  26. Salomone VN, Meichtry JM, Zampieri G, Litter MI. Chem Eng J, 2015, 261: 27–35

    Article  CAS  Google Scholar 

  27. Li H, Zhai F, Gui D, Wang X, Wu C, Zhang D, Dai X, Deng H, Su X, Diwu J, Lin Z, Chai Z, Wang S. Appl Catal B-Environ, 2019, 254: 47–54

    Article  CAS  Google Scholar 

  28. Lu C, Chen R, Wu X, Fan M, Liu Y, Le Z, Jiang S, Song S. Appl Surf Sci, 2016, 360: 1016–1022

    Article  CAS  Google Scholar 

  29. Feng J, Yang Z, He S, Niu X, Zhang T, Ding A, Liang H, Feng X. Chemosphere, 2018, 212: 114–123

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Z, Liu C, Dong Z, Dai Y, Xiong G, Liu Y, Wang Y, Wang Y, Liu Y. Appl Surf Sci, 2020, 520: 146352

    Article  CAS  Google Scholar 

  31. Liu X, Du P, Pan W, Dang C, Qian T, Liu H, Liu W, Zhao D. Appl Catal B-Environ, 2018, 231: 11–22

    Article  CAS  Google Scholar 

  32. Kim YK, Lee S, Ryu J, Park H. Appl Catal B-Environ, 2015, 163: 584–590

    Article  CAS  Google Scholar 

  33. Lee S, Kang U, Piao G, Kim S, Han DS, Park H. Appl Catal B-Environ, 2017, 207: 35–41

    Article  CAS  Google Scholar 

  34. Li P, Wang J, Wang Y, Liang J, He B, Pan D, Fan Q, Wang X. Chem Eng J, 2019, 365: 231–241

    Article  CAS  Google Scholar 

  35. Abney CW, Mayes RT, Saito T, Dai S. Chem Rev, 2017, 117: 13935–14013

    Article  CAS  PubMed  Google Scholar 

  36. Sun Q, Aguila B, Perman J, Ivanov AS, Bryantsev VS, Earl LD, Abney CW, Wojtas L, Ma S. Nat Commun, 2018, 9: 1644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Yue Y, Mayes RT, Kim J, Fulvio PF, Sun XG, Tsouris C, Chen J, Brown S, Dai S. Angew Chem Int Ed, 2013, 52: 13458–13462

    Article  CAS  Google Scholar 

  38. Yuan Y, Zhao S, Wen J, Wang D, Guo X, Xu L, Wang X, Wang N. Adv Funct Mater, 2019, 29: 1805380

    Article  CAS  Google Scholar 

  39. Xu X, Zhang H, Ao J, Xu L, Liu X, Guo X, Li J, Zhang L, Li Q, Zhao X, Ye B, Wang D, Shen F, Ma H. Energy Environ Sci, 2019, 12: 1979–1988

    Article  CAS  Google Scholar 

  40. Zhang S, Li H, Wang S. Chem, 2020, 6: 1504–1505

    Article  CAS  Google Scholar 

  41. Feng L, Wang H, Feng T, Yan B, Yu Q, Zhang J, Guo Z, Yuan Y, Ma C, Liu T, Wang N. Angew Chem Int Ed, 2021, anie.202101015

  42. Li H, Wang S. Chem, 2021, 7: 279–280

    Article  CAS  Google Scholar 

  43. Wang G, Zhen J, Zhou L, Wu F, Deng N. J Radioanal Nucl Chem, 2014, 304: 579–585

    Article  CAS  Google Scholar 

  44. Wang H, Guo H, Zhang N, Chen Z, Hu B, Wang X. Environ Sci Technol, 2019, 53: 6454–6461

    Article  CAS  PubMed  Google Scholar 

  45. Sun X, Kolling DRJ, Deskins S, Adkins E. Inorg Chim Acta, 2018, 483: 12–20

    Article  CAS  Google Scholar 

  46. Azenha MEDG, Burrows HD, Formosinho SJ, Miguel MGM. J Chem Soc Faraday Trans 1, 1989, 85: 2625–2634

    Article  CAS  Google Scholar 

  47. Kannan S, Vaughn AE, Weis EM, Barnes CL, Duval PB. J Am Chem Soc, 2006, 128: 14024–14025

    Article  CAS  PubMed  Google Scholar 

  48. Sarakha M, Bolte M, Burrows HD. J Phys Chem A, 2000, 104: 3142–3149

    Article  CAS  Google Scholar 

  49. Zhu M, Cai Y, Liu S, Fang M, Tan X, Liu X, Kong M, Xu W, Mei H, Hayat T. Environ Pollution, 2019, 248: 448–455

    Article  CAS  Google Scholar 

  50. Le Z, Xiong C, Gong J, Wu X, Pan T, Chen Z, Xie Z. Environ Pollution, 2020, 260: 114070

    Article  CAS  Google Scholar 

  51. Kemp TJ, Shand MA. Inorg Chem, 1986, 25: 3840–3843

    Article  CAS  Google Scholar 

  52. Denning RG. J Phys Chem A, 2007, 111: 4125–4143

    Article  CAS  PubMed  Google Scholar 

  53. Natrajan LS. Coord Chem Rev, 2012, 256: 1583–1603

    Article  CAS  Google Scholar 

  54. Ling J, Ozga M, Stoffer M, Burns PC. Dalton Trans, 2012, 41: 7278

    Article  CAS  PubMed  Google Scholar 

  55. Petrus E, Bo C. J Comput Chem, 2020, 41: 1124–1129

    Article  CAS  PubMed  Google Scholar 

  56. Sun Y, Ding C, Cheng W, Wang X. J Hazard Mater, 2014, 280: 399–408

    Article  CAS  PubMed  Google Scholar 

  57. Sun Y, Yang S, Sheng G, Guo Z, Tan X, Xu J, Wang X. Sep Purif Tech, 2011, 83: 196–203

    Article  CAS  Google Scholar 

  58. Stefanovsky SV, Stefanovsky OI, Kadyko MI. J Non-Crystalline Solids, 2016, 443: 192–198

    Article  CAS  Google Scholar 

  59. Poncet F, Valdivieso F, Gibert R, Pijolat M. Mater Chem Phys, 2011, 58: 55–57

    Article  Google Scholar 

  60. Iwasita T, Pastor E. Electrochim Acta, 1994, 39: 531–537

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21976054, 21976014, U1930402), the National Key Research and Development Program of China (2017YFA0207002), the Science Challenge Project (TZ2016004), and the Fundamental Research Funds for the Central Universities (2020MS036). The authors thank the generous computer time from TianHe2-JK Supercomputer Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guixia Zhao, Shuxian Hu or Xiangke Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information (SI) on

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Hu, Y., Shen, Z. et al. Rapid and selective uranium extraction from aqueous solution under visible light in the absence of solid photocatalyst. Sci. China Chem. 64, 1323–1331 (2021). https://doi.org/10.1007/s11426-021-9987-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-9987-1

Keywords

Navigation