Skip to main content
Log in

Photoreduction as an efficient approach for the rapid removal of U(VI) from the aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, solar light induced photoreduction of water-soluble U(VI) was realized with metahnol under anaerobic conditions at the optimal pH around 5.00. TEM, XPS, and XRD analyses prove that U(VI) is removed from the aqueous solution by forming insoluble brown uranium precipitates containing uranium dioxide (UO2). The photoreduction approach shows obvious selectivity for the removal of U(VI) and the efficiency (95.47%) is comparable to that of the photocatalytic reduction method (99.35%) while only uranium sediments are formed with the photoreduction approach. Photoreduction offers an efficient approach for the rapid removal of U(VI) from the aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tollefson J (2016) China’s carbon emissions could peak sooner than forecast. Nature 531(7595):425–425

    Article  PubMed  CAS  Google Scholar 

  2. Butler D (2004) Nuclear power’s new dawn. Nature 429(6989):238–240

    Article  PubMed  CAS  Google Scholar 

  3. Li Z-J, Huang Z-W, Guo W-L, Wang L, Zheng L-R, Chai Z-F, Shi W-Q (2017) Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic TiO2/Fe3O4 and its graphene composite. Environ Sci Technol 51(10):5666–5674

    Article  PubMed  CAS  Google Scholar 

  4. Dewey C, Sokaras D, Kroll T, Bargar JR, Fendorf S (2020) Calcium-uranyl-carbonato species kinetically limit U(VI) reduction by Fe(II) and lead to U(V)-bearing ferrihydrite. Environ Sci Technol 54(10):6021–6030

    Article  PubMed  CAS  Google Scholar 

  5. O’Loughlin EJ, Kelly SD, Cook RE, Csencsits R, Kemner KM (2003) Reduction of uranium(VI) by mixed iron(II)/iron(III) hydroxide (green rust): formation of UO2 nanoparticles. Environ Sci Technol 37(4):721–727

    Article  PubMed  Google Scholar 

  6. Li P, Wang J, Wang Y, Liang J, He B, Pan D, Fan Q, Wang X (2019) Photoconversion of U(VI) by TiO2: an efficient strategy for seawater uranium extraction. Chem Eng J 365:231–241

    Article  CAS  Google Scholar 

  7. Schulte-Herbrüggen HMA, Semião AJC, Chaurand P, Graham MC (2016) Effect of pH and pressure on uranium removal from drinking water using NF/RO membranes. Environ Sci Technol 50(11):5817–5824

    Article  PubMed  Google Scholar 

  8. Lu Y (2014) Coordination chemistry in the ocean. Nat Chem 6(3):175–177

    Article  PubMed  CAS  Google Scholar 

  9. Zhou L, Bosscher M, Zhang C, Özçubukçu S, Zhang L, Zhang W, Li CJ, Liu J, Jensen MP, Lai L, He C (2014) A protein engineered to bind uranyl selectively and with femtomolar affinity. Nat Chem 6(3):236–241

    Article  PubMed  CAS  Google Scholar 

  10. Zhang H, Liu W, Li A, Zhang D, Li X, Zhai F, Chen L, Chen L, Wang Y, Wang S (2019) Three mechanisms in one material: uranium capture by a polyoxometalate–organic framework through combined complexation, chemical reduction, and photocatalytic reduction. Angew Chem Int Ed 58(45):16110–16114

    Article  CAS  Google Scholar 

  11. Roberts HE, Morris K, Law GTW, Mosselmans JFW, Bots P, Kvashnina K, Shaw S (2017) Uranium(V) incorporation mechanisms and stability in Fe(II)/Fe(III) (oxyhydr) oxides. Environ Sci Technol Lett 4(10):421–426

    Article  CAS  Google Scholar 

  12. Stewart BD, Mayes MA, Fendorf S (2010) Impact of uranyl – calcium – carbonato complexes on uranium(VI) adsorption to synthetic and natural sediments. Environ Sci Technol 44(3):928–934

    Article  PubMed  CAS  Google Scholar 

  13. Yang W, Pan Q, Song S, Zhang H (2019) Metal–organic framework-based materials for the recovery of uranium from aqueous solutions. Inorg Chem Front 6(8):1924–1937

    Article  CAS  Google Scholar 

  14. Zhao Z, Cheng G, Zhang Y, Han B, Wang X (2021) Metal-organic-framework based functional materials for uranium recovery: performance optimization and structure/functionality-activity relationships. ChemPlusChem 86(8):1177–1192

    Article  PubMed  CAS  Google Scholar 

  15. Song S, Huang Q, Cheng G, Wang W, Lu Z, Zhang R, Wen T, Zhang Y, Wang J, Wang X (2019) Immobilization of U(VI) on hierarchical NiSiO@MgAl and NiSiO@NiAl nanocomposites from wastewater. ACS Sustain Chem Eng 7(3):3475–3486

    Article  CAS  Google Scholar 

  16. Zhang S, Yuan D, Zhao J, Ren G, Zhao X, Liu Y, Wang Y, He Y, Ma M, Zhang Q (2021) Highly efficient extraction of uranium from strong HNO3 media achieved on phosphine oxide functionalized superparamagnetic composite polymer microspheres. J Mater Chem A 9(34):18393–18405

    Article  CAS  Google Scholar 

  17. Zhao M, Cui Z, Pan D, Fan F, Tang J, Hu Y, Xu Y, Zhang P, Li P, Kong XY, Wu W (2021) An efficient uranium adsorption magnetic platform based on amidoxime-functionalized flower-like Fe3O4@TiO2 core-shell microspheres. ACS Appl Mater Interfaces 13(15):17931–17939

    Article  PubMed  CAS  Google Scholar 

  18. Wang J, Wang Y, Wang W, Ding Z, Geng R, Li P, Pan D, Liang J, Qin H, Fan Q (2020) Tunable mesoporous g-C3N4 nanosheets as a metal-free catalyst for enhanced visible-light-driven photocatalytic reduction of U(VI). Chem Eng J 383:123193

    Article  CAS  Google Scholar 

  19. Chen J, Ollis DF, Rulkens WH, Bruning H (1999) Photocatalyzed deposition and concentration of soluble uranium(VI) from TiO2 suspensions. Colloid Surf A-Physicochem Eng Asp 151(1):339–349

    Article  CAS  Google Scholar 

  20. Liang P, Yuan L, Du K, Wang L, Li Z, Deng H, Wang X, Luo S-Z, Shi W (2021) Photocatalytic reduction of uranium(VI) under visible light with 2D/1D Ti3C2/CdS. Chem Eng J 420:129831

    Article  CAS  Google Scholar 

  21. Li H, Zhai F, Gui D, Wang X, Wu C, Zhang D, Dai X, Deng H, Su X, Diwu J, Lin Z, Chai Z, Wang S (2019) Powerful uranium extraction strategy with combined ligand complexation and photocatalytic reduction by postsynthetically modified photoactive metal-organic frameworks. Appl Catal B 254:47–54

    Article  CAS  Google Scholar 

  22. Liang P-l, Yuan L-y, Deng H, Wang X-c, Wang L, Li Z-j, Luo S-z, Shi W-q (2020) Photocatalytic reduction of uranium(VI) by magnetic ZnFe2O4 under visible light. Appl Catal B 267:118688

    Article  CAS  Google Scholar 

  23. Li P, Wang J, Wang Y, Dong L, Wang W, Geng R, Ding Z, Luo D, Pan D, Liang J, Fan Q (2021) Ultrafast recovery of aqueous uranium: photocatalytic U(VI) reduction over CdS/g-C3N4. Chem Eng J 425:131552

    Article  CAS  Google Scholar 

  24. Chen K, Chen C, Ren X, Alsaedi A, Hayat T (2019) Interaction mechanism between different facet TiO2 and U(VI): experimental and density-functional theory investigation. Chem Eng J 359:944–954

    Article  CAS  Google Scholar 

  25. Mühr-Ebert EL, Wagner F, Walther C (2019) Speciation of uranium: compilation of a thermodynamic database and its experimental evaluation using different analytical techniques. Appl Geochem 100:213–222

    Article  Google Scholar 

  26. Amadelli R, Maldotti A, Sostero S, Carassiti V (1991) Photodeposition of uranium oxides onto TiO2 from aqueous uranyl solutions. J Chem Soc Farady Trans 87(19):3267–3273

    Article  CAS  Google Scholar 

  27. Wang J, Wang Y, Wang W, Peng T, Liang J, Li P, Pan D, Fan Q, Wu W (2020) Visible light driven Ti3+ self-doped TiO2 for adsorption-photocatalysis of aqueous U(VI). Environ Pollut 262:114373

    Article  PubMed  CAS  Google Scholar 

  28. Le Z, Xiong C, Gong J, Wu X, Pan T, Chen Z, Xie Z (2020) Self-cleaning isotype g-C3N4 heterojunction for efficient photocatalytic reduction of hexavalent uranium under visible light. Environ Pollut 260:114070

    Article  PubMed  CAS  Google Scholar 

  29. Tong X, Wang S, Zuo J, Ge Y, Gao Q, Liu S, Ding J, Liu F, Luo J, Xiong J (2021) Two 2D uranyl coordination complexes showing effective photocatalytic degradation of Rhodamine B and mechanism study. Chin Chem Lett 32(2):604–608

    Article  CAS  Google Scholar 

  30. Wang W-D, Bakac A, Espenson JH (1995) Uranium(VI)-catalyzed photooxidation of hydrocarbons with molecular oxygen. Inorg Chem 34(24):6034–6039

    Article  CAS  Google Scholar 

  31. Li S, Hu Y, Shen Z, Cai Y, Ji Z, Tan X, Liu Z, Zhao G, Hu S, Wang X (2021) Rapid and selective uranium extraction from aqueous solution under visible light in the absence of solid photocatalyst. Sci China Chem 64(8):1323–1331

    Article  CAS  Google Scholar 

  32. Salomone VN, Meichtry JM, Schinelli G, Leyva AG, Litter MI (2014) Photochemical reduction of U(VI) in aqueous solution in the presence of 2-propanol. J Photochem Photobiol A: Chem 277:19–26

    Article  CAS  Google Scholar 

  33. Salomone VN, Meichtry JM, Zampieri G, Litter MI (2015) New insights in the heterogeneous photocatalytic removal of U(VI) in aqueous solution in the presence of 2-propanol. Chem Eng J 261:27–35

    Article  CAS  Google Scholar 

  34. Burrows HD, Kemp TJ (1974) The photochemistry of the uranyl ion. Chem Soc Rev 3(2):139–165

    Article  CAS  Google Scholar 

  35. Mao Y, Bakac A (1996) Photocatalytic Oxidation of Toluene to Benzaldehyde by Molecular Oxygen. J Phys Chem 100(10):4219–4223

    Article  CAS  Google Scholar 

  36. Li Y, Zhang G, Eugen Schwarz WH, Li J (2020) Excited-State Chemistry: Photocatalytic Methanol Oxidation by Uranyl@Zeolite through Oxygen-Centered Radicals. Inorg Chem 59(9):6287–6300

    Article  PubMed  CAS  Google Scholar 

  37. Kannan S, Vaughn AE, Weis EM, Barnes CL, Duval PB (2006) Anhydrous Photochemical Uranyl(VI) Reduction: Unprecedented Retention of Equatorial Coordination Accompanying Reversible Axial Oxo/Alkoxide Exchange. J Am Chem Soc 128(43):14024–14025

    Article  PubMed  CAS  Google Scholar 

  38. Xie J, Lin J, Zhou X (2018) pH-dependent microbial reduction of uranium(VI) in carbonate-free solutions: UV-vis, XPS, TEM, and thermodynamic studies. Environ Sci Pollut Res 25(22):22308–22317

    Article  CAS  Google Scholar 

  39. Pan Z, Bártová B, LaGrange T, Butorin SM, Hyatt NC, Stennett MC, Kvashnina KO, Bernier-Latmani R (2020) Nanoscale mechanism of UO2 formation through uranium reduction by magnetite. Nat Commun 11(1):4001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kvashnina KO, Butorin SM, Martin P, Glatzel P (2013) Chemical state of complex uranium oxides. Phys Rev Lett 111(25):253002

    Article  PubMed  CAS  Google Scholar 

  41. Wang Y, Chen Q, Shen X (2016) Preparation of low-temperature sintered UO2 nanomaterials by radiolytic reduction of ammonium uranyl tricarbonate. J Nucl Mater 479:162–166

    Article  CAS  Google Scholar 

  42. Li S, Niu Z, Pan D, Cui Z, Shang H, Lian J, Wu W (2022) Efficient photoreduction strategy for uranium immobilization based on graphite carbon nitride/activated carbon nanocomposites. Chin Chem Lett 33(7):3581–3584

    Article  CAS  Google Scholar 

  43. Li S, Yang X, Cui Z, Xu Y, Niu Z, Li P, Pan D, Wu W (2021) Efficient photoreduction strategy for uranium immobilization based on graphite carbon nitride/perovskite oxide heterojunction nanocomposites. Appl Catal B 298:120625

    Article  CAS  Google Scholar 

  44. Liu Y, Wu S, Liu J, Xie S, Liu Y (2021) Synthesis of g-C3N4/TiO2 nanostructures for enhanced photocatalytic reduction of U(VI) in water. RSC Adv 11(8):4810–4817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Zhang L, Li H, Li L, Deng J, Deng W, Zhao Y (2013) Photocatalytic Reduction of Uranyl Ions over Anatase and Rutile Nanostructured TiO2. Chem Lett 42(7):689–690

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Funds of China (No.12005086) and Fundamental Research Funds for the Central Universities (lzujbky-2020-kb06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duoqiang Pan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Li, S., Wei, X. et al. Photoreduction as an efficient approach for the rapid removal of U(VI) from the aqueous solution. J Radioanal Nucl Chem 331, 4159–4168 (2022). https://doi.org/10.1007/s10967-022-08508-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08508-6

Keywords

Navigation