Skip to main content
Log in

On the origin and regulation of ultrasound responsiveness of block copolymer nanoparticles

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Noninvasive ultrasound is more convenient and easily accessible for controlled drug delivery of polymeric nanoparticles than many other stimuli. However, controlled ultrasound responsiveness is rather challenging as the mechanism is still unclear. In this article, we disclose the origin and the key regulating factors of ultrasound responsiveness of block copolymer nanoparticles such as simple vesicles, framboidal vesicles, lamellae, beads-like micelles and complex micelles that are self-assembled from a range of poly(ethylene oxide)-b-polymethacrylates based model copolymers. We discover that the intrinsic ultrasound responsiveness of block copolymer nanoparticles thermodynamically originates from their metastable states, and its expression kinetically relates to the mobility of the hydrophobic segments of block copolymers. Specifically, the self-assembly temperature (Ts) that has been usually considered as a less important factor in most of macromolecular self-assembly systems, and the solvents for the selfassembly are two dominant regulating factors of the ultrasound responsiveness because they determine the thermodynamic state (metastable or stable) of nanoparticles. For example, simple vesicles with good or excellent ultrasound responsiveness can be prepared in THF/water when the Ts is around or slightly below the glass transition temperature (Tg) of the hydrophobic segment of the block copolymer because the combination of this solvent with this Ts facilitates the formation of metastable vesicles. By contrast, thermodynamically stable solid nanoparticles such as spherical micelles and lamellae (mainly formed in DMF/water) are not sensitive to ultrasound at all, neither are the vesicles in THF/water at stable states when the Ts is highly above Tg. In addition, we unravel that the responsive rate is highly dependent on the sonication temperature (Tu), i.e., the higher the Tu, the faster the rate. Overall, the above important findings provide us with a fresh insight into how to design ultrasound-responsive nanoparticles and may open new avenues for synthesizing translational noninvasively responsive drug carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun H, Wang F, Du J. Sci Sin-Chim, 2019, 49: 877–890

    Google Scholar 

  2. Torchilin V. Adv Drug Deliver Rev, 2011, 63: 131–135

    CAS  Google Scholar 

  3. Gong J, Chen M, Zheng Y, Wang S, Wang Y. J Controlled Release, 2012, 159: 312–323

    CAS  Google Scholar 

  4. Xiao Y, Sun H, Du J. J Am Chem Soc, 2017, 139: 7640–7647

    CAS  PubMed  Google Scholar 

  5. Xiao Y, Hu Y, Du J. Mater Horiz, 2019, https://doi.org/10.1039/C9MH00625G

    Google Scholar 

  6. Song T, Xi YJ, Du JZ. Acta Polym Sin, 2018, 1: 119–128

    Google Scholar 

  7. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nat Nanotech, 2007, 2: 751–760

    CAS  Google Scholar 

  8. Wang F, Gao J, Xiao J, Du J. Nano Lett, 2018, 18: 5562–5568

    CAS  PubMed  Google Scholar 

  9. Zhu Y, Yang B, Chen S, Du J. Prog Polym Sci, 2017, 64: 1–22

    CAS  Google Scholar 

  10. Manouras T, Vamvakaki M. Polym Chem, 2016, 8: 74–96

    Google Scholar 

  11. Mura S, Nicolas J, Couvreur P. Nat Mater, 2013, 12: 991–1003

    CAS  PubMed  Google Scholar 

  12. Bian B, Zhang YY, Dong YC, Wu F, Wang C, Wang S, Xu Y, Liu DS. Sci China Chem, 2018, 61: 1568–1571

    CAS  Google Scholar 

  13. Wang D, Wang X. Prog Polym Sci, 2013, 38: 271–301

    CAS  Google Scholar 

  14. Cabane E, Malinova V, Menon S, Palivan CG, Meier W. Soft Matter, 2011, 7: 9167–9176

    CAS  Google Scholar 

  15. Al-Ahmady Z, Kostarelos K. Chem Rev, 2016, 116: 3883–3918

    CAS  PubMed  Google Scholar 

  16. Yuan K, Zhou X, Du JZ. Acta Phys-Chim Sin, 2017, 33: 656–660

    CAS  Google Scholar 

  17. Chen W, Du J. Sci Rep, 2013, 3: 2162

    PubMed  PubMed Central  Google Scholar 

  18. Yang B, Du JZ. Chin J Polym Sci, 2019, https://doi.org/10.1007/s10118-020-2345-6

    Google Scholar 

  19. Nappini S, Bombelli FB, Bonini M, Nordèn B, Baglioni P. Soft Matter, 2010, 6: 154–162

    CAS  Google Scholar 

  20. Xiao J, Hu Y, Du J. Sci China Chem, 2018, 61: 569–575

    CAS  Google Scholar 

  21. Liu Q, Song L, Chen S, Gao J, Zhao P, Du J. Biomaterials, 2017, 114: 23–33

    CAS  PubMed  Google Scholar 

  22. Yan Q, Yuan J, Cai Z, Xin Y, Kang Y, Yin Y. J Am Chem Soc, 2010, 132: 9268–9270

    CAS  PubMed  Google Scholar 

  23. Du J, Armes SP. J Am Chem Soc, 2005, 127: 12800–12801

    CAS  PubMed  Google Scholar 

  24. Huang Y, Qin J, Wang J, Yan G, Wang X, Tang R. Sci China Chem, 2018, 61: 1447–1459

    CAS  Google Scholar 

  25. Shen H, Zhang L, Eisenberg A. J Am Chem Soc, 1999, 121: 2728–2740

    CAS  Google Scholar 

  26. Zhang X, Han L, Liu M, Wang K, Tao L, Wan Q, Wei Y. Mater Chem Front, 2017, 1: 807–822

    CAS  Google Scholar 

  27. Mo R, Jiang T, Di J, Tai W, Gu Z. Chem Soc Rev, 2014, 43: 3595–3629

    CAS  PubMed  Google Scholar 

  28. Kim H, Kang YJ, Kang S, Kim KT. J Am Chem Soc, 2012, 134: 4030–4033

    CAS  PubMed  Google Scholar 

  29. Quinn JF, Whittaker MR, Davis TP. Polym Chem, 2017, 8: 97–126

    CAS  Google Scholar 

  30. Cai Z, Da Zhang Z, Lin X, Chen Y, Wu M, Wei Z, Zhang Z, Liu X, Yao C. Nanotechnology, 2017, 28: 425102

    PubMed  Google Scholar 

  31. Hu J, Zhang G, Liu S. Chem Soc Rev, 2012, 41: 5933–5949

    CAS  PubMed  Google Scholar 

  32. Fouladi F, Steffen KJ, Mallik S. Bioconjugate Chem, 2017, 28: 857–868

    CAS  Google Scholar 

  33. Liang B, Tong R, Wang Z, Guo S, Xia H. Langmuir, 2014, 30: 9524–9532

    CAS  PubMed  Google Scholar 

  34. Yildirim T, Yildirim I, Yañez-Macias R, Stumpf S, Fritzsche C, Hoeppener S, Guerrero-Sanchez C, Schubert S, Schubert US. Polym Chem, 2017, 8: 1328–1340

    CAS  Google Scholar 

  35. Wang Z, He Q, Zhao W, Luo J, Gao W. J Controlled Release, 2017, 264: 66–75

    CAS  Google Scholar 

  36. Zhou F, Xie M, Chen D. Macromolecules, 2014, 47: 365–372

    CAS  Google Scholar 

  37. Schroeder A, Kost J, Barenholz Y. Chem Phys Lipids, 2009, 162: 1–16

    CAS  PubMed  Google Scholar 

  38. Suslick KS, Price GJ. Annu Rev Mater Sci, 1999, 29: 295–326

    CAS  Google Scholar 

  39. Xuan J, Boissière O, Zhao Y, Yan B, Tremblay L, Lacelle S, Xia H, Zhao Y. Langmuir, 2012, 28: 16463–16468

    CAS  PubMed  Google Scholar 

  40. Xuan J, Pelletier M, Xia H, Zhao Y. Macromol Chem Phys, 2011, 212: 498–506

    CAS  Google Scholar 

  41. Wang J, Pelletier M, Zhang H, Xia H, Zhao Y. Langmuir, 2009, 25: 13201–13205

    CAS  PubMed  Google Scholar 

  42. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Mol Pharm, 2008, 5: 505–515

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mitragotri S. Nat Rev Drug Discov, 2005, 4: 255–260

    CAS  PubMed  Google Scholar 

  44. Huang L, Yu C, Huang T, Xu S, Bai Y, Zhou Y. Nanoscale, 2016, 8: 4922–4926

    CAS  PubMed  Google Scholar 

  45. Du J, Chen Y, Zhang Y, Han CC, Fischer K, Schmidt M. J Am Chem Soc, 2003, 125: 14710–14711

    CAS  PubMed  Google Scholar 

  46. Hasegawa U, Nishida T, van der Vlies AJ. Macromolecules, 2015, 48: 4388–4393

    CAS  Google Scholar 

  47. van der Vlies AJ, Inubushi R, Uyama H, Hasegawa U. Bioconj Chem, 2016, 27: 1500–1508

    CAS  Google Scholar 

  48. Mai Y, Eisenberg A. Chem Soc Rev, 2012, 41: 5969–5985

    CAS  PubMed  Google Scholar 

  49. Hu Y, Chen Y, Du J. Polym Chem, 2019, 10: 3020–3029

    CAS  Google Scholar 

  50. Sun H, Liu D, Du J. Chem Sci, 2019, 10: 657–664

    CAS  PubMed  Google Scholar 

  51. Zhang L, Eisenberg A. Science, 1995, 268: 1728–1731

    CAS  PubMed  Google Scholar 

  52. Lavasanifar A, Samuel J, Kwon GS. Adv Drug Deliver Rev, 2002, 54: 169–190

    CAS  Google Scholar 

  53. Discher DE, Eisenberg A. Science, 2002, 297: 967–973

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21674081) and Fundamental Research Funds for the Central Universities (22120180109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Du.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information (SI)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Du, J. On the origin and regulation of ultrasound responsiveness of block copolymer nanoparticles. Sci. China Chem. 63, 272–281 (2020). https://doi.org/10.1007/s11426-019-9612-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9612-8

Keywords

Navigation