Skip to main content
Log in

Ultrasound-responsive Homopolymer Nanoparticles

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Noninvasive ultrasound is a more effective strategy for on-demand drug delivery of polymeric nanoparticles than many other stimuli. However, the preparation of ultrasound-responsive homopolymer nanoparticles is still very challenging. In this study, we disclose the regulating factors of ultrasound responsiveness of homopolymer nanoparticles and the disaggregation behavior of homopolymer nanoparticle aggregates. Homopolymer nanoparticles such as vesicles and large compound micelles (LCMs) are self-assembled from poly(methoxyethyl methacrylate) (PMEMA) and poly(amic acid) (PAA), respectively. The ultrasound responsiveness of PAA vesicles at metastable state could be regulated by tuning the self-assembly temperature (Ts), and was optimized when Ts is around the glass transition temperature (Tg) of PAA. However, the PMEMA LCMs did not respond to ultrasound as they are at stable state. On the other hand, poly(2-(2-ethoxyethoxy)ethyl acrylate) (PEEA) could self-assemble into vesicle aggregates or complex micelle aggregates, which were dissociated upon sonication. Overall, the above findings provide us with a fresh insight for designing ultrasound-responsive polymeric nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mai, Y.; Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev.2012, 41, 5969–5985.

    Article  CAS  Google Scholar 

  2. Wang, M. Z.; Wang, T.; Yuan, K.; Du, J. Z. Preparation of water dispersible poly(methyl methacrylate)-based vesicles for facile persistent antibacterial applications. Chinese J. Polym. Sci.2016, 34, 44–51.

    Article  Google Scholar 

  3. Zou, Y. J.; He, S. S.; Du, J. Z. ɛ-Poly(L-lysine)-based hydrogels with fast-acting and prolonged antibacterial activities. Chinese J. Polym. Sci.2018, 36, 1239–1250.

    Article  CAS  Google Scholar 

  4. Xiao, J. G.; Hu, Y.; Du, J. Z. Polymer nanodisks by collapse of nanocapsules. Sci. China Chem.2018, 61, 569–575.

    Article  CAS  Google Scholar 

  5. Song, T.; Xi, Y. J.; Du, J. Z. Antibacterial hydrogels incorporated with poly(glutamic acid)-based vesicles. Acta Polymerica Sinica (in Chinese) 2018, 119–128.

    Google Scholar 

  6. Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol.2007, 2, 751–760.

    Article  CAS  Google Scholar 

  7. Zhu, Y. Q.; Yang, B.; Chen, S.; Du, J. Z. Polymer vesicles: Mechanism, preparation, application, and responsive behavior. Prog. Polym. Sci.2017, 64, 1–22.

    Article  CAS  Google Scholar 

  8. Chen, W. Q.; Du, J. Z. Ultrasound and pH dually responsive polymer vesicles for anticancer drug delivery. Sci. Rep.2013, 3, 2162.

    Article  Google Scholar 

  9. Zhao, Y. Z.; Du, L. N.; Lu, C. T.; Jin, Y. G.; Ge, S. P. Potential and problems in ultrasound-responsive drug delivery systems. Int. J. Nanomed.2013, 8, 1621–1633.

    Google Scholar 

  10. Wang, D. R.; Wang, X. G. Amphiphilic azo polymers: Molecular engineering, self-assembly and photoresponsive properties. Prog. Polym. Sci.2013, 38, 271–301.

    Article  CAS  Google Scholar 

  11. Al-Ahmady, Z.; Kostarelos, K. Chemical components for the design of temperature-responsive vesicles as cancer therapeutics. Chem. Rev.2016, 116, 3883–3918.

    Article  CAS  Google Scholar 

  12. Yuan, K.; Zhou, X.; Du, J. Z. Synthesis and characterization of thermo-responsive polypeptide-based vesicles with photo-crosslinked membranes. Acta Phys. Chim. Sin.2017, 33, 656–660.

    CAS  Google Scholar 

  13. Wang, F. Y. K.; Gao, J. Y.; Xiao, J. G.; Du, J. Z. Dually gated polymersomes for gene delivery. Nano Lett.2018, 18, 5562–5568.

    Article  CAS  Google Scholar 

  14. Xu, X. F.; Pan, C. Y.; Zhang, W. J.; Hong, C. Y. Polymerization-induced self-assembly generating vesicles with adjustable pHresponsive release performance. Macromolecules2019, 52, 1965–1975.

    Article  CAS  Google Scholar 

  15. Qiu, L.; Zhao, L.; Xing, C.; Zhan, Y. Redox-responsive polymer prodrug/AgNPs hybrid nanoparticles for drug delivery. Chin. Chem. Lett.2018, 29, 301–304.

    Article  CAS  Google Scholar 

  16. Tan, J.; Deng, Z.; Liu, G.; Hu, J.; Liu, S. Anti-inflammatory polymersomes of redox-responsive polyprodrug amphiphiles with inflammation-triggered indomethacin release characteristics. Biomaterials2018, 178, 608–619.

    Article  CAS  Google Scholar 

  17. Mo, R.; Jiang, T.; Di, J.; Tai, W.; Gu, Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem. Soc. Rev.2014, 43, 3595–3629.

    Article  CAS  Google Scholar 

  18. Xiao, Y. F.; Hu, Y.; Du, J. Z. Controlling blood sugar levels with a glycopolymersome. Mater. Horiz.2019, DOI: https://doi.org/10.1039/C9MH00625G.

    Google Scholar 

  19. Wright, D. B.; Thompson, M. P.; Touve, M. A.; Carlini, A. S.; Gianneschi, N. C. Enzyme-responsive polymer nanoparticles via ring-opening metathesis polymerization-induced self-assembly. Macromol. Rapid Commun.2019, 40, 1800467.

    Article  Google Scholar 

  20. Xuan, J.; Pelletier, M.; Xia, H.; Zhao, Y. Ultrasound-induced disruption of amphiphilic block copolymer micelles. Macromol. Chem. Phys.2011, 212, 498–506.

    Article  CAS  Google Scholar 

  21. Xuan, J.; Boissiere, O.; Zhao, Y.; Yan, B.; Tremblay, L.; Lacelle, S.; Xia, H.; Zhao, Y. Ultrasound-responsive block copolymer micelles based on a new amplification mechanism. Langmuir2012, 28, 16463–16468.

    Article  CAS  Google Scholar 

  22. Yin, T.; Wang, P.; Li, J.; Zheng, R.; Zheng, B.; Cheng, D.; Li, R.; Lai, J.; Shuai, X. Ultrasound-sensitive siRNA-loaded nanobubbles formed by hetero-assembly of polymeric micelles and liposomes and their therapeutic effect in gliomas. Biomaterials2013, 34, 4532–4543.

    Article  CAS  Google Scholar 

  23. Yin, T.; Wang, P.; Li, J.; Wang, Y.; Zheng, B.; Zheng, R.; Cheng, D.; Shuai, X. Tumor-penetrating codelivery of siRNA and paclitaxel with ultrasound-responsive nanobubbles hetero-assembled from polymeric micelles and liposomes. Biomaterials2014, 35, 5932–5943.

    Article  CAS  Google Scholar 

  24. Wang, Y.; Yin, T.; Su, Z.; Qiu, C.; Wang, Y.; Zheng, R.; Chen, M.; Shuai, X. Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery. Nano Res.2018, 11, 3710–3721.

    Article  CAS  Google Scholar 

  25. Zhang, L.; Yin, T.; Li, B.; Zheng, R.; Qiu, C.; Lam, K. S.; Zhang, Q.; Shuai, X. Size-modulable nanoprobe for high-performance ultrasound imaging and drug delivery against cancer. ACS Nano2018, 12, 3449–3460.

    Article  CAS  Google Scholar 

  26. Zhou, F.; Xie, M.; Chen, D. Structure and ultrasonic sensitivity of the superparticles formed by self-assembly of single chain Janus nanoparticles. Macromolecules2014, 47, 365–372.

    Article  CAS  Google Scholar 

  27. Zhang, J.; Liu, K.; Mullen, K.; Yin, M. Self-assemblies of amphiphilic homopolymers: Synthesis, morphology studies and biomedical applications. Chem. Commun.2015, 51, 11541–11555.

    Article  CAS  Google Scholar 

  28. Zhu, Y. Q.; Fan, L.; Yang, B.; Du, J. Z. Multifunctional homopolymer vesicles for facile immobilization of gold nanoparticles and effective water remediation. ACS Nano2014, 8, 5022–31.

    Article  CAS  Google Scholar 

  29. Fan, L.; Lu, H.; Zou, K. Z.; Chen, J.; Du, J. Z. Homopolymer vesicles with a gradient bilayer membrane as drug carriers. Chem. Commun.2013, 49, 11521–11523.

    Article  CAS  Google Scholar 

  30. Sun, H.; Liu, D. Q.; Du, J. Z. Nanobowls with controlled openings and interior holes driven by the synergy of hydrogen bonding and π-π interaction. Chem. Sci.2019, 10, 657–664.

    Article  CAS  Google Scholar 

  31. Sun, H.; Zhu, Y. Q.; Yang, B.; Wang, Y. F.; Wu, Y. P.; Du, J. Z. Template-free fabrication of nitrogen-doped hollow carbon spheres for high-performance supercapacitors based on a scalable homopolymer vesicle. J. Mater. Chem. A2016, 4, 12088–12097.

    Article  CAS  Google Scholar 

  32. Zhu, Y. Q.; Liu, L.; Du, J. Z. Probing into homopolymer self-assembly: How does hydrogen bonding influence morphology? Macromolecules2013, 46, 194–203.

    Article  CAS  Google Scholar 

  33. Sun, H.; Du, J. Z. Plasmonic vesicles with tailored collective properties. Nanoscale2018, 10, 17354–17361.

    Article  CAS  Google Scholar 

  34. Liu, J.; Huang, W.; Pang, Y.; Huang, P.; Zhu, X.; Zhou, Y.; Yan, D. Molecular self-assembly of a homopolymer: An alternative to fabricate drug-delivery platforms for cancer therapy. Angew. Chem. Int. Ed.2011, 50, 9162–9166.

    Article  CAS  Google Scholar 

  35. Yin, M.; Kuhlmann, C. R. W.; Sorokina, K.; Li, C.; Mihov, G.; Pietrowski, E.; Koynov, K.; Klapper, M.; Luhmann, H. J.; Mullen, K.; Weil, T. Novel fluorescent core-shell nanocontainers for cell membrane transport. Biomacromolecules2008, 9, 1381–1389.

    Article  CAS  Google Scholar 

  36. Yin, M.; Shen, J.; Pflugfelder, G. O.; Mullen, K. A fluorescent coreshell dendritic macromolecule specifically stains the extracellular matrix. J. Am. Chem. Soc.2008, 130, 7806–7807.

    Article  CAS  Google Scholar 

  37. Sandanaraj, B. S.; Demont, R.; Thayumanavan, S. Generating patterns for sensing using a single receptor scaffold. J. Am. Chem. Soc.2007, 129, 3506–3507.

    Article  CAS  Google Scholar 

  38. Mane, S. R.; Rao N, V.; Chaterjee, K.; Dinda, H.; Nag, S.; Kishore, A.; Das Sarma, J.; Shunmugam, R. Amphiphilic homopolymer vesicles as unique nano-carriers for cancer therapy. Macromolecules2012, 45, 8037–8042.

    Article  CAS  Google Scholar 

  39. Lim, E. K.; Huh, Y. M.; Yang, J.; Lee, K.; Suh, J. S.; Haam, S. pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv. Mater.2011, 23, 2436–2442.

    Article  CAS  Google Scholar 

  40. Sun, H.; Wang, F. Y. K.; Du, J. Z. Preparation, application and perspective in polymer vesicles with an inhomogeneous membrane. Sci. Sin. Chim.2019, 49, 877–890.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21674081) and Fundamental Research Funds for the Central Universities (No. 22120180109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Zhong Du.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Du, JZ. Ultrasound-responsive Homopolymer Nanoparticles. Chin J Polym Sci 38, 349–356 (2020). https://doi.org/10.1007/s10118-020-2345-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2345-6

Keywords

Navigation