Skip to main content

Ultrasound-Mediated Polymeric Micelle Drug Delivery

  • Chapter
Therapeutic Ultrasound

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 880))

Abstract

The synthesis of multi-functional nanocarriers and the design of new stimuli-responsive means are equally important for drug delivery. Ultrasound can be used as a remote, non-invasive and controllable trigger for the stimuli-responsive release of nanocarriers. Polymeric micelles are one kind of potential drug nanocarrier. By combining ultrasound and polymeric micelles, a new modality (i.e., ultrasound-mediated polymeric micelle drug delivery) has been developed and has recently received increasing attention. A major challenge remaining in developing ultrasound-responsive polymeric micelles is the improvement of the sensitivity or responsiveness of polymeric micelles to ultrasound. This chapter reviews the recent advance in this field. In order to understand the interaction mechanism between ultrasound stimulus and polymeric micelles, ultrasound effects, such as thermal effect, cavitation effect, ultrasound sonochemistry (including ultrasonic degradation, ultrasound-initiated polymerization, ultrasonic in-situ polymerization and ultrasound site-specific degradation), as well as basic micellar knowledge are introduced. Ultrasound-mediated polymeric micelle drug delivery has been classified into two main streams based on the different interaction mechanism between ultrasound and polymeric micelles; one is based on the ultrasound-induced physical disruption of the micelle and reversible release of payload. The other is based on micellar ultrasound mechanochemical disruption and irreversible release of payload.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ariga K, Mori T, Hill JP (2012) Mechanical control of nanomaterials and nanosystems. Adv Mater 24:158–176

    Article  CAS  PubMed  Google Scholar 

  • Ashihara K, Kurakata K, Mizunami T, Matsushita K (2006) Hearing threshold for pure tones above 20 kHz. Acoust Sci Tech 2006(27):12–19

    Article  Google Scholar 

  • Biggs S, Grieser F (1995) Preparation of polystyrene latex with ultrasonic irradiation. Macromolecules 28:4877–4882

    Article  CAS  Google Scholar 

  • Brantley JN, Wiggins KM, Bielawski CW (2011) Unclicking the click: mechanically facilitated 1,3-dipolar cycloreversions. Science 333:1606–1609

    Article  CAS  PubMed  Google Scholar 

  • Brantley JN, Wiggins KM, Bielawski CW (2012) Polymer mechanochemistry: the design and study of mechanophores. Polym Int 62:2–12

    Article  CAS  Google Scholar 

  • Brantley JN, Bailey CB, Wiggins KM, Ketinge-Clay AT, Bielawski CW (2013) Mechanobiochemistry: harnessing biomacromolecules for force-responsive materials. Polym Chem 4:3916–3928

    Article  CAS  Google Scholar 

  • Caruso MM, Davis DA, Shen QS, Odom SA, Sottos NR, White SR, Moore JS (2009) Mechanically-induced chemical changes in polymeric materials. Chem Rev 109:5755–5798

    Article  CAS  PubMed  Google Scholar 

  • Chen KQ, Ye S, Li HL, Xu XJ (1985) Studies on ultrasonic degradation and block/graft copolymerization of hydroxyethyl cellulose and poly(ethylene oxide). J Macromol Sci Chem 22:455–469

    Google Scholar 

  • Chou H, Stoffer JO (1999) Ultrasonically initiated free radical-catalyzed emulsion polymerization of methyl methacrylate. J Appl Polym Sci 72:797–825

    Article  CAS  Google Scholar 

  • Coll C, Mondragón L, Martínez-Máñez R, Sancenón F, Marcos MD, Soto J, Amorós P, Pérez-Payá E (2011) Enzyme-mediated controlled release systems by anchoring peptide sequences on mesoporous silica supports. Angew Chem Int Ed Engl 50:2138–2140

    Article  CAS  PubMed  Google Scholar 

  • Cravotto G, Angew CP (2007) Forcing and controlling chemical reactions with ultrasound. Angew Chem Int Ed Engl 46:5476–5478

    Article  CAS  PubMed  Google Scholar 

  • Cravotto G, Gaudino EC, Cintas P (2013) On the mechanochemical activation by ultrasound. Chem Soc Rev 42:7521–7534

    Article  CAS  PubMed  Google Scholar 

  • David DA, Hamilton A, Yang J, Cremar LD, Van Goug D, Potisek SL, Ong MT, Braun PV, Matinez TJ, White SR, Moore JS, Sottos NR (2009) Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459:68–72

    Article  CAS  Google Scholar 

  • de Geest BG, Skirtach AG, Mamedov AA, Antipov AA, Kotov NA, de Smedt AC, Sukhorukov B (2007) Ultrasound-triggered release from multilayered capsules. Small 3:804–808

    Article  PubMed  CAS  Google Scholar 

  • Diaz de la Rosa MA (2007) High-Frequency Ultrasound Drug Delivery And Cavitation. MSc thesis, Brigham Young University, USA

    Google Scholar 

  • Deckers R, Paradissis A, Oerlemans C, Talelli M, Storm G, Hennink WE, Nijsen JFW (2013) New insights into the HIFU-triggered release from polymer micelles. Langmuir 29:9483–9490

    Article  CAS  PubMed  Google Scholar 

  • Dogra VS, Zhang M, Bhatt S (2009) High-intensity focused ultrasound (HIFU) therapy applications. Ultrasound Clin 4:307–327

    Article  Google Scholar 

  • EI-sherif DM, Lathia JD, Le NT, Wheatley MA (2004) Ultrasound degradation of novel polymer contrast agents. J Biomed Mater Res A 68A:71–78

    Article  CAS  Google Scholar 

  • Eissa AM, Khosravi E (2011) Synthesis of a new smart temperature responsive glycopolymerisation. Eur Polym J 47:61–69

    Article  CAS  Google Scholar 

  • Fellinger K, Schmid J (1954) Klinik and therapies des chromischen gelenkreumatismus. Maudrich Vienna, Austria, pp 549–555

    Google Scholar 

  • Fleige E, Quadir MA, Haag R (2012) Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 64:866–884

    Article  CAS  PubMed  Google Scholar 

  • Fry WJ, Fry FJ (1960) Fundamental neurological research and human neurosurgery using intense ultrasound. IRE Trans Med Electron 7:166–181

    Article  PubMed  Google Scholar 

  • Fujiwara H, Kimura T, Segi M, Nakataka T, Nakamura H (1992) Mechanochemical block copolymerization in heterogeneous systems of the solid poly(vinyl chloride) with styrene by ultrasonic irradiation. Polym Bull 28:189–196

    Article  CAS  Google Scholar 

  • Fujiwara H, Kikyu T, Nanbu H, Honda T (1994) Mechanochemical block copolymerization in heterogeneous systems of the solid poly(vinyl chloride) with styrene by ultrasonic irradiation. Polym Bull 33:317–323

    Article  CAS  Google Scholar 

  • Geers B, Lentacker I, Sanders NN, Demeester J, Meairs S, De Smedt SC (2011) Self-assembled liposome-laoded microbubbles: the missing link for safe and efficient ultrasound triggered drug delivery. J Control Release 152:249–256

    Article  CAS  PubMed  Google Scholar 

  • Gohy JF, Lohmeijer BGG, Schubert US (2002) Metallo-supramolecular block copolymer micelles. Macromolecules 35:4560–4563

    Article  CAS  Google Scholar 

  • Gronroos A, Pirkonen P, Heikkinen J, Ihalainen J, Mursunen H, Sekki H (2001) Ultrasonic depolymerization of aqueous polyvinyl alcohol. Ultrason Sonochem 8:259–264

    Article  CAS  PubMed  Google Scholar 

  • Haar GT, Coussios C (2007) High intensity focused ultrasound: physical principles and devices. Int J Hyperthermia 23:89–104

    Article  PubMed  Google Scholar 

  • Hasanzadeh H, Mokhtari-Dizaji M, Bathaie SZ, Hassan ZM (2011) Effect of local dual frequency sonication on drug distribution from polymeric nanomicelles. Ultrason Sonochem 18:1165–1171

    Article  CAS  PubMed  Google Scholar 

  • Henglein VA (1954) Die Auslösung und der Verlauf der Polymerisation des Acrylamids unter dem Einfluß von Ultraschallwellen. Makromol Chem 14:15–39

    Article  CAS  Google Scholar 

  • Hickenboth CR, Moore JS, White SR, Sottos NR, Baudry J, Wilson SR (2007) Biasing reaction pathways with mechanical force. Nature 446:423–427

    Article  CAS  PubMed  Google Scholar 

  • Howard B, Gao Z, Lee SW, Seo MH, Rapoport N (2006) Ultrasound-enhanced chemotherapy of drug-resistant breast cancer tumors by micellar-encapsulated paclitaxel. Am J Drug Deliv 4:97–104

    Article  CAS  Google Scholar 

  • Husseini GA, Pitt WG (2008) Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv Drug Deliv Rev 60:1137–1152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Husseini GA, Myrup G, Pitt WG, Christensen DA, Rapoport NY (2000) Factors affecting acoustically triggered release of drugs from polymeric micelles. J Control Release 69:43–52

    Article  CAS  PubMed  Google Scholar 

  • Husseini GA, Christensen DA, Rapoport NY, Pitt WG (2002a) Ultrasonic release of doxorubicin from Pluronic P105 micelles stabilized with an interpenetrating network of N, N-diethylacrylamide. J Control Release 83:303–305

    Article  CAS  PubMed  Google Scholar 

  • Husseini GA, Rapoport NY, Christensen DA, Pruitt J, Pitt WG (2002b) Kinetics of ultrasonic release of doxorubicin from pluronic P105 micelles. Colloids Surf B 24:253–264

    Article  CAS  Google Scholar 

  • Husseini GA, Runyan CM, Pitt WG (2002c) Investigating the mechanism of acoustically activated uptake of drugs from Pluronic cells. BMC Cancer 2:20

    Article  PubMed Central  PubMed  Google Scholar 

  • Husseini GA, Diaz de la Rosa MA, Richardson ES, Christensen DA, Pitt WG (2005) The role of cavitation in acoustically activated drug delivery. J Control Release 107:253–261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Husseini GA, Diaz de la Rosa MA, Gabuji T, Zeng Y, Christensen DA, Pitt WG (2007) Release of doxorubicin from unstabilized and stabilized micelles under the action of ultrasound. J Nanosci Nanotechnol 7:1028–1033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Husseini GA, Pitt WG, Christensen DA, Dicknson DJ (2009) Degradation kinetics of stabilized Pluronic micelles under the action of ultrasound. J Control Release 138:45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Husseini GA, Velluto D, Kherbeck L, Pitt WG, Hubbell JA, Christensen DA (2013) Investigating the acoustic release of doxorubicin from targeted micelles. Colloids Surf B Biointerfaces 101:153–155

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan S, Potisek SL, Piermattei A, Sijbesma RP (2008) Highly efficient mechanochemical scission of silver-carbene coordination polymers. J Am Chem Soc 130:14968–14969

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki H, Takeda Y, Arakawa R (2007) Mass spectrometric analysis for high molecular weight synthetic polymers using ultrasonic degradation and the mechanism of degradation. Anal Chem 79:4182–4187

    Article  CAS  PubMed  Google Scholar 

  • Kiessling F, Fokong S, Bzyl J, Lederle W, Palmowski M, Lammer T (2014) Recent advances in molecular, multimodal and theranostic ultrasound imaging. Adv Drug Deliv Rev 72:15–27

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Matsuda H, Zhou HS, Honma I (2006) Ultrasound-triggered smart drug release from a poly(dimethylsiloxane)- mesoporous silica composite. Adv Mater 18:3083–3088

    Article  CAS  Google Scholar 

  • Knezevic NZ, Trewyn BG, Lin VSY (2011) Functionalized mesoporous silica nanoparticle-based visible light responsive controlled release delivery system. Chem Commun (camb) 47:2817–2819

    Article  CAS  Google Scholar 

  • Kobayashi D, Karasawa M, Takahashi T, Otake K and Shono A (2012) Effluence of internal substances from pluronic micelle using ultrasound. Jpn J Appl Phys 51:07GD10

    Google Scholar 

  • Kost J, Langer R (2001) Responsive polymeric delivery systems. Adv Drug Deliv Rev 46:125–148

    Article  CAS  PubMed  Google Scholar 

  • Kost J, Leong K, Langer R (1989) Ultrasound-enhanced polymer degradation and release of incorporated substances. Proc Natl Acad Sci U S A 86:7663–7666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kruus P (1983) Polymerization resulting from ultrasonic cavitation. Ultrasonics 21:201–204

    Article  CAS  Google Scholar 

  • Kruus P, Patraboy TJ (1985) Initiation of polymerization with ultrasound in methyl methacrylate. J Phys Chem 89:3379–3384

    Article  CAS  Google Scholar 

  • Kryger MJ, Ong MT, Odom SA, Sottos NR, White SR, Martinez TJ, Moore JS (2010) Masked cyanoacrylates unveiled by mechanical force. J Am Chem Soc 132:4558–4559

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Lin HY, Chen HC, Thomas JL (2008) Ultrasound mediated the release of curcumin from microemulsions. Langmuir 24:1707–1713

    Article  CAS  PubMed  Google Scholar 

  • Lensen D, Gelderblom EC, Vriezema DM, Marmottant P, Verdonschot N, Versluis M, de Jong N, van Hest JCM (2011) Biodegradable polymeric microscapsules for sequential ultrasound-triggered drug delivery. Soft Matter 7:5417–5422

    Article  CAS  Google Scholar 

  • Li Y, Tong R, Xia H, Zhang H, Xuan J (2010) High intensity focused ultrasound and redox dual responsive polymer micelles. Chem Commun 46:7739–7741

    Article  CAS  Google Scholar 

  • Liang B, Tong R, Wang Z, Guo S, Xia H (2014) High intensity focused ultrasound responsive metallo-supramolecular block copolymer micelles. Langmuir 30:9524–9532

    Article  CAS  PubMed  Google Scholar 

  • Lin HY, Thomas JL (2003) PEG-lipids and oligo(ethylene glycol) surfactants enhance the ultrasonic permeabilizability of liposomes. Langmuir 19:1098–1105

    Article  CAS  Google Scholar 

  • Liu LS, Kost J, D’Emanuele A, Langer R (1992) Experimental approach to elucidate the mechanism of ultrasound-enhanced polymer erosion and release of incorporated substances. Macromolecules 25:123–128

    Article  CAS  Google Scholar 

  • Liu Y, Chou H, Stoffer JO (1994) Analysis of ultrasonically induced free radicals in the emulsion polymerization system by GC-MS. J Appl Polym Sci 53:247–254

    Article  CAS  Google Scholar 

  • Liu X, Zhou T, Du Z, Wei Z, Zhang J (2011) Recognition ability of temperature responsive molecularly imprinted polymer hydrogels. Soft Matter 7:1986–1993

    Article  CAS  Google Scholar 

  • Luche JL (1998) Synthetic Organic Sonochemistry, Springer Science+Business Media, LLC

    Google Scholar 

  • Makino K, Mossoba M, Reisz P (1983) Chemical effects of ultrasound on aqueous solutions. Formation of hydroxyl radicals and hydrogens atoms. J Phys Chem 87:1369–1377

    Article  CAS  Google Scholar 

  • Malhotra SL (1982) Ultrasonic modification of polymers. II. Degradation of polystyrene, substituted polystyrene, and poly(n-vinyl carbazole) in the presence of flexible chain polymers. J Macromol Sci Chem 18:1055–1085

    Article  Google Scholar 

  • Marin A, Muniruzzaman M, Rapoport N (2001a) Acoustic activation of drug delivery from polymeric micelles: effect of pulsed ultrasound. J Control Release 71:239–249

    Article  CAS  PubMed  Google Scholar 

  • Marin A, Muniruzzaman M, Rapoport N (2001b) Mechanism of the ultrasonic activation of micellar drug delivery. J Control Release 75:69–81

    Article  CAS  PubMed  Google Scholar 

  • Marin A, Sun H, Husseini GA, Pitt WG, Christensen DA, Rapoport NY (2002) Drug delivery in pluronic micelles: effect of high-frequency ultrasound on drug release from micelles and intracellular uptake. J Control Release 84:39–47

    Article  CAS  PubMed  Google Scholar 

  • Mason TJ, Lorimer JP (1988) Sonochemistry: theory, application and uses of ultrasound in chemistry. Ellis Norwood, Chichester

    Google Scholar 

  • May PA, Moore JS (2013) Polymer mechanochemistry: techniques to generate molecular force via elongational flows. Chem Soc Rev 42:7497–7506

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S (2005) Healing sound: the use of ultrasound in drug delivery and other therapeutic appilications. Nature Rev. Nat Rev Drug Discov 4:255–260

    Article  CAS  PubMed  Google Scholar 

  • Munshi N, Rapoport N, Pitt WG (1997) Ultrasonic activated drug delivery from Pluronic P-105 micelles. Cancer Lett 118:13–19

    Article  CAS  PubMed  Google Scholar 

  • Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003

    Article  CAS  PubMed  Google Scholar 

  • Musyanovych A, Landfester K (2014) Polymer micro- and nanocapsules as biological carriers with multifunctional properties. Macromol Biosci 14:458–477

    Article  CAS  PubMed  Google Scholar 

  • Myhr G, Moan J (2006) Synergistic and tumour selective effects of chemotherapy and ultrasound treatment. Cancer Lett 232:206–213

    Article  CAS  PubMed  Google Scholar 

  • Nakayama M, Akimoto J, Okano T (2014) Polymeric micelles with stimuli-triggering systems for advanced cancer drug targeting. J Drug Target 22:584–599

    Article  CAS  PubMed  Google Scholar 

  • Nelson JL, Roeder BL, Carmen JC, Roloff F, Pitt WG (2002) Ultrasonically activated chemotherapeutic drug delivery in a rat model. Cancer Res 62:7280–7283

    CAS  PubMed  Google Scholar 

  • Oerlemans C, Bult W, Bos M, Storm G, Nijsen JFW, Hennink WE (2010) Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 27:2569–2589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park K (2010) Focused ultrasound for targeted nanoparticle delivery to tumors. J Control Release 146:263

    Article  CAS  PubMed  Google Scholar 

  • Paulusse JMJ, Sijbesma RP (2008) Selectivity of mechanochemical chain scission in mixed palladium(II) and platinum(II) coordination polymers. Chem Commun 37:4416–4418

    Article  CAS  Google Scholar 

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnol 2:751–760

    Article  CAS  Google Scholar 

  • Phenix CP, Togtema M, Pichardo S, Zehbe I, Curiel L (2014) High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery. J Pharm Pharm Sci 17:136–153

    PubMed  Google Scholar 

  • Pitt WG, Husseini GA, Staples BJ (2004) Ultrasonic drug delivery – a general review. Expert Opin Drug Deliv 1:37–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pitt WG, Husseini GA, Kherbeck LN (2013) Smart Materials for Drug Delivery. RSC Publishing 6(1):169–171

    Google Scholar 

  • Price GJ, Smith PF (1991) The use of ultrasound for the controlled degradation of polymer solutions. Polym Int 3:159–164

    Article  Google Scholar 

  • Price GJ, Norris DJ, West PJ (1992) Polymerization of methyl methacrylate initiated by ultrasound. Macromolecules 25:6447–6454

    Article  CAS  Google Scholar 

  • Pritchard EM, Valentin T, Boison D, Kaplan DL (2011) Incorporation of proteinase into silk-based delivery devices for enhanced control of degradation and drug release. Biomaterials 32:909–918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qiu G, Wang Q, Wang C, Lau W, Guo Y (2007) Polystyrene/Fe3O4 magnetic emulsion and nanocomposite prepared by ultrasonically initiated miniemulsion polymerization. Ultrasonic Sonochem 14:55–61

    Article  CAS  Google Scholar 

  • Rapoport NY (1999) Stabilization and activation of pluronic micelles for the tumor-targeted drug delivery. Colloids Surf B Biointerfaces 16:93–111

    Article  CAS  Google Scholar 

  • Rapoport NY, Herron JN, Pitt WG (1999) Micellar delivery of doxorubicin and its paramagnetic analog, ruboxyl, to HL-60 cells: effect of micelle structure and ultrasound on the intracellular drug uptake. J Control Release 58:153–162

    Article  CAS  PubMed  Google Scholar 

  • Reich G (1988) Ultrasound-induced degradation of PLA and PLGA during microsphere processing: influence of formulation variables. Eur J Pharm Biopharm 45:165–171

    Article  Google Scholar 

  • Richards WT, Loomis AL (1927) The chemical effects of high frequency sound waves I. A preliminary survey. J Am Chem Soc 49:3086–3100

    Article  CAS  Google Scholar 

  • Schroeder A, Kost J, Barenholz Y (2009) Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes. Chem Phys Lipids 162:1–16

    Article  CAS  PubMed  Google Scholar 

  • Shchukin DG, Gorin DA, Moehwald H (2006) Ultrasonically induced opening of polyelectrolyte microcontainers. Langmuir 22:7400–7404

    Article  CAS  PubMed  Google Scholar 

  • Sirsi SR, Borden MA (2014) State-of-the-art materials for ultrasound-triggered drug delivery. Adv Drug Deliv Rev 72:3–14

    Article  CAS  PubMed  Google Scholar 

  • Skauen D, Zentner G (1984) Phonophoresis. Int J Pharm 20:235–245

    Article  CAS  Google Scholar 

  • Skirtach AG, De Geest BG, Mamedov A, Antipov AA, Kotov NA, Sukhorukov GBJ (2007) Ultrasound stimulated release and catalysis using polyelectrolyte multilayer capsules. J Mater Chem 17:1050–2054

    Article  CAS  Google Scholar 

  • Smith MJ, Eccleston ME, Slater NK (2008) The effect of high intensity focussed ultrasound (HIFU) on pH responsive PEGylated micelles. J Acoust Soc Am 123:3223

    Article  Google Scholar 

  • Stevenson-Abouelnasr D, Husseini GA, Pitt WG (2007) Further investigations of the mechanism of Doxorubicin release from P105 micelles using kinetic models. Colloids Surf B Biointerfaces 55:59–66

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Su J, Chen F, Cryns VL, Messersmith PB (2011) Catechol polymers for pH-responsive, targeted drug delivery to cancer cells. J Am Chem Soc 133:11850–11853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suslick KS (1990) Sonochemistry. Science 247:1439–1445

    Article  CAS  PubMed  Google Scholar 

  • Tabata M, Sohma J (1980) Direct evidence of main-chain scissions induced by ultrasonic irradiation of benzene solutions of polymers. Chem Phys Lett 73:178–180

    Article  CAS  Google Scholar 

  • Timko BP, Dvir T, Kohane DS (2010) Remotely triggerable drug delivery systems. Adv Mater 22:4925–4943

    Article  CAS  PubMed  Google Scholar 

  • Tong R, Xia H, Lu X (2013) Fast release behavior of block copolymer micelles under high intensity focused ultrasound/redox combined stimulis. J Mater Chem B 1:886–894

    Article  CAS  Google Scholar 

  • Tong R, Lu X, Xia H (2014) A facile mechanophore functionalization of an amphiphilic block copolymer towards remote ultrasound and redox dual stimulus responsiveness. Chem Commun 50:3575–3578

    Article  CAS  Google Scholar 

  • Ugarenko M, Chan CK, Nudelman A, Rephaeli A, Cutts SM, Phillips DR (2009) Development of pluronic micelle-encapsulated doxorubicin and formaldehyde-releasing prodrugs for localized anticancer chemotherapy. Oncol Res 17:283–299

    Article  PubMed  Google Scholar 

  • Wang Q, Xia H, Zhang C (2001) Preparation of polymer/inorganic nanoparticles composites through ultrasonic irradiation. J Appl Polymer Sci 80:1478–1488

    Article  CAS  Google Scholar 

  • Wang C, Wang Q, Chen X (2005) Intercalated PS/Na+-MMT nanocomposites prepared by ultrasonically initiated in situ emulsion polymerization. Macromol Mater Eng 290:920–926

    Article  CAS  Google Scholar 

  • Wang J, Pelletier M, Zhang H, Xia H, Zhao Y (2009) High-frequency ultrasound-responsive block copolymer micelle. Langmuir 25:13201–13205

    Article  CAS  PubMed  Google Scholar 

  • Whittell GR, Hager MD, Schubert US, Manners I (2011) Functional soft materials from metallopolymers and metallosupramolecular polymers. Nat Mater 10:176–188

    Article  CAS  PubMed  Google Scholar 

  • Wiggins KM, Brantley JN, Bielawski CW (2013) Methods for activating and characterizing mechanically responsive polymers. Chem Soc Rev 42:7130–7147

    Article  CAS  PubMed  Google Scholar 

  • Wiita AP, Ainavarapu SRK, Huang HH, Fernandez JM (2006) Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proc Natl Acad Sci U S A 103:7222–7227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xia H, Wang Q (2001) Synthesis and characterization of conductive polyaniline nanoparticle through ultrasonic assisted inverse microemulsion polymerization. J Nanopart Res 3:401–411

    Article  CAS  Google Scholar 

  • Xia H, Wang Q (2002) Ultrasonic irradiation: a novel way to prepare conductive polyaniline/nanocrystalline TiO2 particles composites. Chem Mater 14:2158–2165

    Article  CAS  Google Scholar 

  • Xia H, Wang Q (2003) Preparation of conductive polyaniline/nanosilica particle composites through ultrasonic irradiation. J Appl Polymer Sci 87:1811–1817

    Article  CAS  Google Scholar 

  • Xia H, Zhang C, Wang Q (2001) Study on ultrasonic induced encapsulating emulsion polymerization in presence of nanoparticles. J Appl Polymer Sci 80:1130–1139

    Article  CAS  Google Scholar 

  • Xia H, Wang Q, Liao Y, Xu X (2002) Polymerization rate and mechanism of ultrasonically initiated emulsion polymerization of n-butyl acrylate. Ultrasonics Sonochem 9:151–158

    Article  CAS  Google Scholar 

  • Xia H, Wang Q, Qiu G (2003) Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in-situ emulsion polymerization. Chem Mater 15:3879–3886

    Article  CAS  Google Scholar 

  • Xuan J, Pelletier M, Xia H, Zhao Y (2011) Ultrasound-induced disruption of amphiphilic block copolymer micelles. Macromol Chem Phys 212:498–506

    Article  CAS  Google Scholar 

  • Xuan J, Boissière O, Zhao Y, Yan B, Tremblay L, Lacelle S, Xia H, Zhao Y (2012) Ultrasound-responsive block copolymer micelles based on a new amplification mechanism. Langmuir 28:16463–16468

    Article  CAS  PubMed  Google Scholar 

  • Yan B, Boyer JC, Branda NR, Zhao Y (2011) Near-infrared light-triggered dissociated of block copolymer micelles using upconverting nanoparticles. J Am Chem Soc 133:19714–19717

    Article  CAS  PubMed  Google Scholar 

  • Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK (1995) Vascular-permeability in a human tumor xenograft – Molecular-size dependence and cutoff size. Cancer Res 55:3752–3756

    CAS  PubMed  Google Scholar 

  • Zeng Y, Pitt WG (2006) A polymeric micelle system with a hydrolysable segment for drug delivery. J Biomater Sci Polym Ed 17:591–604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Pitt WGJ (2006) A polymeric micelle system with a hydrolysable segment for drug delivery. J Biomater Sci Polym Ed 17:591–604

    Article  CAS  Google Scholar 

  • Zhang J, Chen KQ, Liu QR, Xu X (1990) Ultrasonic heterogeneous copolymerization of poly (ethylene oxide) with hexyl methacrylate. Acta Polym Sin 3:271–276

    Google Scholar 

  • Zhang C, Wang Q, Xia H, Qiu G (2002) Ultrasonic-induced microemulsion polymerization of styrene. Eur Polymer J 38:1769–1776

    Article  CAS  Google Scholar 

  • Zhang H, Xia H, Wang J, Li Y (2009) High intensity focused ultrasound-responsive release behavior of PLA-b-PEG copolymer micells. J Control Release 139:31–39

    Article  CAS  PubMed  Google Scholar 

  • Zhou K, Wang Y, Huang X, Luby-Phelps K, Sumer BD, Gao J (2011) Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew Chem Int Ed Engl 50:6109–6114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hesheng Xia or Yue Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xia, H., Zhao, Y., Tong, R. (2016). Ultrasound-Mediated Polymeric Micelle Drug Delivery. In: Escoffre, JM., Bouakaz, A. (eds) Therapeutic Ultrasound. Advances in Experimental Medicine and Biology, vol 880. Springer, Cham. https://doi.org/10.1007/978-3-319-22536-4_20

Download citation

Publish with us

Policies and ethics