Skip to main content
Log in

The effect of oxidation on physicochemical properties and aqueous stabilization of multiwalled carbon nanotubes: comparison of multiple analysis methods

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Surface oxidation can alter physicochemical properties of multiwalled carbon nanotubes (MWCNTs) and influence their aqueous stabilization. Many techniques have been used to characterize the physicochemical properties and aqueous stabilization of MWCNTs. However, the relationship between the change in physicochemical property and the aqueous stabilization of MWCNTs merits more studies, and the multiple characterization techniques have not been well compared. This study systematically and comparatively investigated the effect of oxidation on the physicochemical properties and aqueous stabilization of MWCNTs using multiple analysis methods. Increased surface area, disclosed tube ends, defects on the sidewalls, disruption of the electronic structure, and removal of metal catalysts and amorphous carbon were observed for the oxidized MWCNTs (o-MWCNTs) using the multipoint Brunauer-Emmett-Teller (BET) method, transmission electron microscope observation, Raman spectroscopy, UV-Vis spectroscopy, and thermogravimetric analysis. An oxidation-time-dependent increase in oxygen content of the MWCNTs was verified by the methods of elemental analysis, mass difference calculation, and X-ray photoelectron spectroscopy (XPS). Fourier transform infrared spectroscopy, XPS, and the Boehm titration were employed to study the functionalities on the MWCNT surfaces. Despite the limitations of these techniques, the results indicated that the dramatic increase in carboxyl groups was mainly responsible for the significant increase in oxygen content after the oxidation. The dissociation of the grafted functional groups increased electronegativity of the o-MWCNTs and facilitated the aqueous stabilization of o-MWCNTs through electrostatic repulsions. The oxidation affected the UV-Vis absorbance of MWCNT suspensions. The absorbances at 800 nm of the stabilized MWCNT suspensions had a good correlation with the MWCNT concentrations and could be used to quantify the MWCNT suspensions. The findings of this work are expected to boost the research on carbon nanotubes and their environmental behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mauter MS, Elimelech M. Environ Sci Technol, 2008, 42: 5843–5859

    Article  CAS  Google Scholar 

  2. Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A. ACS Nano, 2013, 7: 2891–2897

    Article  CAS  Google Scholar 

  3. Bennett SW, Adeleye A, Ji Z, Keller AA. Water Res, 2013, 47: 4074–4085

    Article  CAS  Google Scholar 

  4. Yu J, Yang B, Cheng B. Nanoscale, 2012, 4: 2670–2677

    Article  CAS  Google Scholar 

  5. Shi XF, Li N, Zhao K, Cui GW, Zhao YQ, Ma MY, Xu KH, Li P, Dong YB, Tang B. Appl Catal B-Environ, 2013, 136–137: 334–340

    Article  Google Scholar 

  6. Lin D, Liu N, Yang K, Xing B, Wu F. Environ Pollution, 2010, 158: 1270–1274

    Article  CAS  Google Scholar 

  7. Bai Y, Wu F, Lin D, Xing B. Environ Sci Pollut Res, 2014, 21: 4358–4365

    Article  CAS  Google Scholar 

  8. Wepasnick KA, Smith BA, Schrote KE, Wilson HK, Diegelmann SR, Fairbrother DH. Carbon, 2011, 49: 24–36

    Article  CAS  Google Scholar 

  9. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C. Carbon, 2008, 46: 833–840

    Article  CAS  Google Scholar 

  10. Jain S, Thakare VS, Das M, Godugu C, Jain AK, Mathur R, Chuttani K, Mishra AK. Chem Res Toxicol, 2011, 24: 2028–2039

    Article  CAS  Google Scholar 

  11. Gangupomu RH, Sattler ML, Ramirez D. J Hazardous Mater, 2016, 302: 362–374

    Article  CAS  Google Scholar 

  12. Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD. Carbon, 2005, 43: 153–161

    Article  CAS  Google Scholar 

  13. Langley LA, Fairbrother DH. Carbon, 2007, 45: 47–54

    Article  CAS  Google Scholar 

  14. Wepasnick KA, Smith BA, Bitter JL, Howard Fairbrother D. Anal Bioanal Chem, 2010, 396: 1003–1014

    Article  CAS  Google Scholar 

  15. Schierz A, Zänker H. Environ Pollution, 2009, 157: 1088–1094

    Article  CAS  Google Scholar 

  16. Boehm HP. Carbon, 1994, 32: 759–769

    Article  CAS  Google Scholar 

  17. Wu WH, Jiang W, Zhang WD, Lin DH, Yang K. Environ Sci Technol, 2013, 47: 8373–8382

    CAS  Google Scholar 

  18. Lin DH, Li TT, Yang K, Wu FC. J Hazard Mater, 2012, 241: 404–410

    Article  Google Scholar 

  19. Zhang D, Shi L, Fang J, Li X, Dai K. Mater Lett, 2005, 59: 4044–4047

    Article  CAS  Google Scholar 

  20. Tian X, Zhou S, Zhang Z, He X, Yu M, Lin D. Environ Sci Technol, 2010, 44: 8144–8149

    Article  CAS  Google Scholar 

  21. Moonoosawmy KR, Kruse P. J Phys Chem C, 2009, 113: 5133–5140

    Article  CAS  Google Scholar 

  22. Childres I, Jauregui LA, Park W, Cao H, Chen YP. Raman spectroscopy of graphene and related materials. In: Jang JI, Eds. New Developments in Photon and Materials Research. New York: Nova Science Publishers, 2013

    Google Scholar 

  23. Puchades I, Lawlor CC, Schauerman CM, Bucossi AR, Rossi JE, Cox ND, Landi BJ. J Mater Chem C, 2015, 3: 10256–10266

    Article  CAS  Google Scholar 

  24. Huh S, Park J, Kim YS, Kim KS, Hong BH, Nam JM. ACS Nano, 2011, 5: 9799–9806

    Article  CAS  Google Scholar 

  25. Jovanovic S, Da Ross T, Ostric A, Tošic D, Prekodravac J, Markovic Z, Markovic, BT. Phys Scr, 2014, 2014: 14–23

    Google Scholar 

  26. Lin D, Tian X, Li T, Zhang Z, He X, Xing B. Environ Pollution, 2012, 167: 138–147

    Article  CAS  Google Scholar 

  27. Chen CM, Zhang Q, Yang MG, Huang CH, Yang YG, Wang MZ. Carbon, 2012, 50: 3572–3584

    Article  CAS  Google Scholar 

  28. Solhy A, Machado BF, Beausoleil J, Kihn Y, Gonçalves F, Pereira MFR, Órfão JJM, Figueiredo JL, Faria JL, Serp P. Carbon, 2008, 46: 1194–1207

    Article  CAS  Google Scholar 

  29. Kim UJ, Furtado CA, Liu X, Chen G, Eklund PC. J Am Chem Soc, 2005, 127: 15437–15445

    Article  CAS  Google Scholar 

  30. Yue ZR, Jiang W, Wang L, Gardner SD, Pittman CU. Carbon, 1999, 37: 1785–1796

    Article  CAS  Google Scholar 

  31. Zhou JH, Sui ZJ, Zhu J, Li P, Chen D, Dai YC, Yuan WK. Carbon, 2007, 45: 785–796

    Article  CAS  Google Scholar 

  32. Yang DQ, Rochette JF, Sacher E. J Phys Chem B, 2005, 109: 7788–7794

    Article  CAS  Google Scholar 

  33. Kim YS, Yang SJ, Lim HJ, Kim T, Lee K, Park CR. Carbon, 2012, 50: 1510–1516

    Article  CAS  Google Scholar 

  34. Vennerberg DC, Quirino RL, Jang Y, Kessler MR. ACS Appl Mater Interf, 2014, 6: 1835–1842

    Article  CAS  Google Scholar 

  35. Goertzen SL, Thériault KD, Oickle AM, Tarasuk AC, Andreas HA. Carbon, 2010, 48: 1252–1261

    Article  CAS  Google Scholar 

  36. Kim YS, Park CR. Carbon, 2016, 96: 729–741

    Article  CAS  Google Scholar 

  37. White B, Banerjee S, O'Brien S, Turro NJ, Herman IP. J Phys Chem C, 2007, 111: 13684–13690

    Article  CAS  Google Scholar 

  38. Sun Z, Nicolosi V, Rickard D, Bergin SD, Aherne D, Coleman JN. J Phys Chem C, 2008, 112: 10692–10699

    Article  CAS  Google Scholar 

  39. Smith B, Wepasnick K, Schrote KE, Bertele AR, Ball WP, O’Melia C, Fairbrother DH. Environ Sci Technol, 2009, 43: 819–825

    Article  CAS  Google Scholar 

  40. Yang K, Qi L, Wei W, Wu W, Lin D. Environ Sci Pollut Res, 2016, 23: 1060–1070

    Article  CAS  Google Scholar 

  41. Busch VM, Loosli F, Santagapita PR, Buera MP, Stoll S. Sci Total Environ, 2015, 532: 556–563

    Article  CAS  Google Scholar 

  42. Bian SW, Mudunkotuwa IA, Rupasinghe T, Grassian VH. Langmuir, 2011, 27: 6059–6068

    Article  CAS  Google Scholar 

  43. Paredes JI, Villar-Rodil S, Martińez-Alonso A, Tascoń JMD. Langmuir, 2008, 24: 10560–10564

    Article  CAS  Google Scholar 

  44. Pal PP, Larionova T, Anoshkin IV, Jiang H, Nisula M, Goryunkov AA, Tolochko OV, Karppinen M, Kauppinen EI, Nasibulin AG. J Phys Chem C, 2015, 119: 27821–27828

    Article  CAS  Google Scholar 

  45. Lin L, Peng H, Ding G. Appl Thermal Eng, 2015, 91: 163–171

    Article  CAS  Google Scholar 

  46. Zannotti M, Giovannetti R, D’Amato CA, Rommozzi E. Spectroc Acta Pt A-Molec Biomolec Spectr, 2016, 153: 22–29

    Article  CAS  Google Scholar 

  47. Zhang L, Lei C, Chen J, Yang K, Zhu L, Lin D. Carbon, 2015, 83: 198–207

    Article  CAS  Google Scholar 

  48. Hyung H, Fortner JD, Hughes JB, Kim JH. Environ Sci Technol, 2007, 41: 179–184

    Article  CAS  Google Scholar 

  49. Schwyzer I, Kaegi R, Sigg L, Magrez A, Nowack B. Environ Pollution, 2011, 159: 1641–1648

    Article  CAS  Google Scholar 

  50. Yang K, Yi ZL, Jing QF, Yue RL, Jiang W, Lin DH. Chin Sci Bull, 2013, 58: 2082–2090

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daohui Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, M., Fang, J. et al. The effect of oxidation on physicochemical properties and aqueous stabilization of multiwalled carbon nanotubes: comparison of multiple analysis methods. Sci. China Chem. 59, 1498–1507 (2016). https://doi.org/10.1007/s11426-016-0153-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0153-y

Keywords

Navigation