Skip to main content
Log in

Low-temperature hydrothermal synthesis and functionalization of multiwalled carbon nanotubes

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Multiwalled carbon nanotubes (MWCNTs) have been synthesized by facile hydrothermal synthesis technique followed by carboxylic addent functionalization. Crystallographic, topographic, and morphological analyses of pristine and functionalized MWCNTs have been studied using powder X-ray diffraction, electron microscopy, and atomic force microscope, respectively. Fourier transform infrared spectroscopy, UV–Vis absorption spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, and Raman spectroscopic studies have been performed for the confirmation of functionalization. Optical, quantitative, and qualitative analysis of the synthesized pristine and functionalized MWCNTs have been performed using energy-resolved and time-resolved photoluminescence and energy-dispersive X-ray spectroscopic studies. Spectroscopic studies confirm the formation of good-quality pristine and functionalized MWCNTs with carboxylic group addent. Electron micrographs reveal the formation of fragmented functionalized MWCNTs with high aspect ratio, whereas diffraction patterns show good crystallinity of synthesized nanostructures. Structural analyses of synthesized and functionalized MWCNTs have been studied using Brunauer–Emmett–Teller surface area analysis and Barrett–Joyner–Halenda pore size and volume analysis technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. S Iijima Nature 354 56 (1991)

    Article  ADS  Google Scholar 

  2. C Liu, Y Y Fan, M Liu, H T Cong, H M Cheng and M S Dresselhaus Science 286 1127 (1999)

    Article  Google Scholar 

  3. P Kim and C M Lieber Science 286 2148 (1999)

    Article  Google Scholar 

  4. C D Scott, S Arepalli, P Nikolaev and R E Smalley Appl. Phys. A 72 573 (2001)

    Article  ADS  Google Scholar 

  5. D S Bethune et al. Nature 363 605 (1993)

    Article  ADS  Google Scholar 

  6. A Peigney, P Coquay, E Flahaut, R E Vandenberghe, E De Grave and C Laurent J. Phys. Chem. B 105 9699 (2001)

    Article  Google Scholar 

  7. M José-Yacamén, M Miki-Yoshida, L Rendon and J G Santiesteban Appl. Phys. Lett. 62 657 (1993)

  8. S Iijima and T Ichihashi Nature 363 603 (1993)

    Article  ADS  Google Scholar 

  9. Z F Ren et al. Science 282 1105 (1998)

    Article  ADS  Google Scholar 

  10. B W Smith, M Monthioux and D E Luzzi Nature 396 323 (1998)

    Google Scholar 

  11. B Vigolo et al. Science 290 1331 (2000)

    Article  ADS  Google Scholar 

  12. H W Zhu, C L Xu, D H Wu, B Q Wei, R Vajtai and P M Ajayan Science 296 884 (2002)

  13. Y Gogotsi, J A Libera and M Yoshimura J. Mater. Res. 15 2591 (2000)

    Article  ADS  Google Scholar 

  14. J M Calderon-Moreno and M Yoshimura J. Am. Chem. Soc. 123 741 (2001)

    Article  Google Scholar 

  15. Y Jiang et al. J. Am. Chem. Soc. 122 12383 (2000)

    Article  Google Scholar 

  16. J W Liu, M W Shao, X Y Chen, W C Yu, X M Liu and Y T Qian J. Am. Chem. Soc. 125 8088 (2003)

    Article  Google Scholar 

  17. W Wang, S Kunwar, J Y Huang, D Z Wang and Z F Ren Nanotechnology 16 21 (2005)

    Article  ADS  Google Scholar 

  18. S Manafi, H Nadali and H R Irani Mater. Lett. 62 4175 (2008)

    Article  Google Scholar 

  19. S Manafi, M B Rahaei, Y Elli and S Joughehdoust Can. J. Chem. Eng. 88 283 (2010)

    Google Scholar 

  20. W Wang, J Y Huang, D Z Wang and Z F Ren Carbon 43 1328 (2005)

    Google Scholar 

  21. G W Lee et al. Thin Solid Films 516 5781 (2008)

    Article  ADS  Google Scholar 

  22. F Y Wu and H M Cheng J. Phys. D Appl. Phys, 38 4302 (2005)

    Article  ADS  Google Scholar 

  23. P J F Harris Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century, 1st edn. (United Kingdom: Cambridge University Press) (1999)

  24. J P Salvetat Understanding of Carbon Nanotubes, 1st edn. (Berlin: Springer) (2006)

  25. S Goyanes, G R Rubiolo, A Salazar, A Jimeno, M A Corcuera and I. Mondragon Diam. Relat. Mater. 16 412 (2007)

  26. D Kumar, K Singh, V Verma and H S Bhatti Adv. Sci. Eng. Med. 6 1143 (2014)

    Article  Google Scholar 

  27. D Kumar, K Singh, V Verma and H S Bhatti J. Bionanosci. 8 274 (2014)

    Article  Google Scholar 

  28. D Kumar, K Singh, V Verma and H S Bhatti J. Nanoelectron. Optoelectron 9 458 (2014)

    Article  Google Scholar 

  29. D Kumar, K Singh, P Kumar, V Verma and H S Bhatti Chem. Phys. Lett. 635 93 (2015)

    Article  Google Scholar 

  30. D Kumar, Kavita, K Singh, V Verma and H S Bhattii Dig. J. Nano. Bios. 9 1713 (2014)

    Google Scholar 

  31. D Kumar, K Singh, V Verma and H S Bhatti J. Mater. Sci. Mater. Electron. 26 2117 (2015)

    Article  Google Scholar 

  32. D Kumar, K Singh, G Kaur, V Verma and H S Bhatti J. Mater. Sci. Mater. Electron. 26 6068 (2015)

    Article  Google Scholar 

  33. D Kumar, B Kaur, K Singh, V Verma and H S Bhatti J. Mater Sci. Mater. Electron. (2015). doi:10.1007/s10854-015-3464-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Singh, K., Verma, V. et al. Low-temperature hydrothermal synthesis and functionalization of multiwalled carbon nanotubes. Indian J Phys 90, 139–148 (2016). https://doi.org/10.1007/s12648-015-0741-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0741-5

Keywords

PACS Nos.

Navigation