Skip to main content
Log in

A class of iterative greedy algorithms related to Blaschke product

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Möbius transforms, Blaschke products and starlike functions as typical conformal mappings of one complex variable give rise to nonlinear phases with non-negative phase derivatives with the latter being defined by instantaneous frequencies of signals they represent. The positive analytic phase derivative has been a widely interested subject among signal analysts (see Gabor (1946)). Research results of the positive analytic frequency and applications appears in the literature since the middle of the 20th century. Of the positive frequency study a directly related topic is positive frequency decomposition of signals. The mainly focused methods of such decompositions include the maximal selection method and the Blaschke product unwinding method, and joint use of the mentioned methods. In this paper, we propose a class of iterative greedy algorithms based on the Blaschke product and adaptive Fourier decomposition. It generalizes the Blaschke product unwinding method by subtracting constants other than the averages of the remaining functions, aiming at larger winding numbers, and subtracting n-Blaschke forms of the remaining functions, aiming at generating larger numbers of zero-crossings, to fast reduce energy of the remaining terms. Furthermore, we give a comprehensive and rigorous proof of the converging rate in terms of the zeros of the remainders. Finite Blaschke product methods are proposed to avoid the infinite phase derivative dilemma, and to avoid the computational difficulties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahern P R, Clark D N. Radial nth derivatives of Blaschke products. Math Scand, 1971, 28: 189–201

    Article  MathSciNet  MATH  Google Scholar 

  2. Akcay H. Discrete-time system modelling in Lp with orthonormal basis functions. Systems Control Lett, 2000, 39: 365–376

    Article  MathSciNet  MATH  Google Scholar 

  3. Alpay D, Bolotnikov V, Rodman L. One-sided tangential interpolation for operator-valued Hardy functions on polydisks. Integral Equations Operator Theory, 1999, 35: 253–270

    Article  MathSciNet  MATH  Google Scholar 

  4. Alpay D, Colombo F, Qian T, et al. Adaptive orthonormal systems for matrix-valued functions. Proc Amer Math Soc, 2017, 145: 2089–2106

    Article  MathSciNet  MATH  Google Scholar 

  5. Alpay D, Colombo F, Qian T, et al. Adaptative decomposition: The case of the Drury-Arveson space. J Fourier Anal Appl, 2017, 23: 1426–1444

    Article  MathSciNet  MATH  Google Scholar 

  6. Baratchart L, Cardelli M, Olivi M. Identification and rational L2 approximation: A gradient algorithm. Automatica, 1991, 27: 413–417

    Article  MathSciNet  MATH  Google Scholar 

  7. Boashash B. Estimating and interpreting the instantaneous frequency of a signal. I: Fundamental. In: Proceedings of the IEEE, vol. 80. Piscataway: IEEE, 1992, 520–538

    Google Scholar 

  8. Bultheel A, Gonzalez-Vera P, Hendriksen E, et al. Orthogonal Rational Functions. Cambridge: Cambridge University Press, 1999

    Book  MATH  Google Scholar 

  9. Chen Q H, Li L Q, Qian T. Stability of frames generalized by nonlinear Fourier atoms. Int J Wavelets Multiresolut Inf Process, 2005, 3: 465–476

    Article  MathSciNet  MATH  Google Scholar 

  10. Cohen L. Time-Frequency Analysis: Theory and Applications. Upper Saddle River: Prentice Hall, 1995

    Google Scholar 

  11. Coifman R, Peyriére J. Phase unwinding, or invariant subspace decompositions of Hardy spaces. J Fourier Anal Appl, 2019, 25: 684–695

    Article  MathSciNet  MATH  Google Scholar 

  12. Coifman R, Steinerberger S. Nonlinear phase unwinding of functions. J Fourier Anal Appl, 2017, 23: 778–809

    Article  MathSciNet  MATH  Google Scholar 

  13. Coifman R, Steinerberger S, Wu H T. Carrier frequencies, holomorphy and unwinding. SIAM J Math Anal, 2017, 49: 4838–4864

    Article  MathSciNet  MATH  Google Scholar 

  14. Dang P, Qian T. Analytic phase derivatives, all-pass filters and signals of minimum phase. IEEE Trans Signal Process, 2011, 59: 4708–4718

    Article  MathSciNet  MATH  Google Scholar 

  15. Dang P, Qian T, You Z. Hardy-Sobolev spaces decomposition and applications in signal analysis. J Fourier Anal Appl, 2011, 17: 36–64

    Article  MathSciNet  MATH  Google Scholar 

  16. Daubechies I, Lu J F, Wu H T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Appl Comput Harmon Anal, 2011, 30: 243C261

    Article  MathSciNet  MATH  Google Scholar 

  17. Gallardo-Gutiérrez E, Gorkin P. Interpolating Blaschke products and angular derivatives. Trans Amer Math Soc, 2012, 364: 2319–2337

    Article  MathSciNet  MATH  Google Scholar 

  18. Garnett J. Bounded Analytic Functions. New York: Academic Press, 1981

    MATH  Google Scholar 

  19. Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser A Math Phys Eng Sci, 1998, 454: 903–995

    Article  MathSciNet  MATH  Google Scholar 

  20. Konstantin D, Dominique Z. Variational mode decomposition. IEEE Trans Signal Proces, 2014, 62: 531–544

    Article  MathSciNet  MATH  Google Scholar 

  21. Li Y D, Zhang L M, Qian T. 2D partial unwinding—A novel non-linear phase decomposition of images. IEEE Trans Image Process, 2019, 47: 516–525

    MathSciNet  MATH  Google Scholar 

  22. Mai W X, Dang P, Zhang L M, et al. Consecutive minimum phase expansion of physically realizable signals with applications. Math Methods Appl Sci, 2016, 39: 62–72

    Article  MathSciNet  MATH  Google Scholar 

  23. Mandic D P, Rehman N, Wu Z, et al. Empirical mode decomposition-based time-frequency analysis of multivariate signals: The power of adaptive data analysis. IEEE Signal Process Mag, 2013, 30: 74–86

    Article  Google Scholar 

  24. Mi W, Qian T. Frequency domain identification: An algorithm based on adaptive rational orthogonal system. Automatica, 2012, 48: 1154–1162

    Article  MathSciNet  MATH  Google Scholar 

  25. Nahon M. Phase evaluation and segmentation. PhD Thesis. New Haven: Yale University, 2000

    Google Scholar 

  26. Picinbono B. On instantaneous amplitude and phase of signals. IEEE Trans Signal Process, 1997, 45: 552–560

    Article  Google Scholar 

  27. Qian T. Boundary derivatives of the phases of inner and outer functions and applications. Math Methods Appl Sci, 2009, 32: 253–263

    Article  MathSciNet  MATH  Google Scholar 

  28. Qian T. Intrinsic mono-component decomposition of functions: An advance of Fourier theory. Math Methods Appl Sci, 2010, 33: 880–891

    Article  MathSciNet  MATH  Google Scholar 

  29. Qian T. Two-dimensional adaptive Fourier decomposition. Math Methods Appl Sci, 2016, 39: 2431–2448

    Article  MathSciNet  MATH  Google Scholar 

  30. Qian T, Sproessig W, Wang J X. Adaptive Fourier decomposition of functions in quaternionic Hardy spaces. Math Methods Appl Sci, 2012, 35: 43–64

    Article  MathSciNet  Google Scholar 

  31. Qian T, Tan L H. Characterizations of mono-components: The Blaschke and starlike types. Complex Anal Oper Theory, 2018, 12: 1383–1399

    Article  MathSciNet  MATH  Google Scholar 

  32. Qian T, Tan L H, Wang Y B. Adaptive decomposition by weighted inner functions: A generalization of Fourier series. J Fourier Anal Appl, 2011, 17: 175–190

    Article  MathSciNet  MATH  Google Scholar 

  33. Qian T, Wang J Z, Mai W X. An enhancement algorithm for cyclic adaptive Fourier decomposition. Appl Comput Harmon Anal, 2019, 47: 516–525

    Article  MathSciNet  MATH  Google Scholar 

  34. Qian T, Wang R, Xu Y S, et al. Orthonormal bases with nonlinear phases. Adv Comput Math, 2010, 33: 75–95

    Article  MathSciNet  MATH  Google Scholar 

  35. Qian T, Wang Y B. Adaptive Fourier series—a variation of greedy algorithm. Adv Comput Math, 2011, 34: 279–293

    Article  MathSciNet  MATH  Google Scholar 

  36. Qian T, Wegert E. Optimal approximation by Blaschke forms. Complex Var Elliptic Equ, 2013, 58: 123–133

    Article  MathSciNet  MATH  Google Scholar 

  37. Qian T, Yang Y. Hilbert transforms on the sphere with the Clifford algebra setting. J Fourier Anal Appl, 2009, 15: 753–774

    Article  MathSciNet  MATH  Google Scholar 

  38. Rudin W. Function Theory in Polydiscs. New York: W A Benjamin, 1969

    MATH  Google Scholar 

  39. Shapiro J H, Taylor P D. Composition Operators and Classical Function Theory. Tracts in Mathematics. New York: Springer-Verlag, 1993

    Google Scholar 

  40. Singh P, Jodhi S D, Patney R K, et al. The Fourier decomposition method for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser A Math Phys Eng Sci, 2017, 473: 20160871

    MathSciNet  MATH  Google Scholar 

  41. Sun X Y, Dang P. Numerical stability of circular Hilbert transform and its applications to signal decomposition. Appl Math Comput, 2019, 359: 357–373

    MathSciNet  MATH  Google Scholar 

  42. Tan L H, Qian T. Extracting outer function part from Hardy space function. Sci China Math, 2017, 60: 2321–2336

    Article  MathSciNet  MATH  Google Scholar 

  43. Tan L H, Shen L X, Yang L H. Rational orthogonal bases satisfying the Bedrosian identity. Adv Comput Math, 2010, 33: 285–303

    Article  MathSciNet  MATH  Google Scholar 

  44. Weiss G, Weiss M. A derivation of the main results of the theory of Hp-spaces. Rev Un Mat Argentina, 1962, 20: 63–71

    MathSciNet  MATH  Google Scholar 

  45. Xu Y, Yan D Y. The Bedrosian identity for the Hilbert transform of product functions. Proc Amer Math Soc, 2006, 134: 2719–2728

    Article  MathSciNet  MATH  Google Scholar 

  46. Yang Y, Qian T, Sommen F. Phase derivative of monogenic signals in higher dimensional spaces. Complex Anal Oper Theory, 2012, 6: 987–1010

    Article  MathSciNet  MATH  Google Scholar 

  47. Yu B, Zhang H Z. The Bedrosian identity and homogeneous semi-convolution equations. J Integral Equations Appl, 2008, 20: 527–568

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61471132 and 11671363) and the Science and Technology Development Fund, Macau Special Administration Region (Grant No. 0123/2018/A3). The first author and the second author thank Professors Ronald Coifman and Stefan Steinerberger for their beneficial discussions during their visits to Yale University in 2018 and their helpful suggestions for the improvement of this paper. The authors are grateful to the anonymous referees for their careful reading of the manuscript and many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihui Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, T., Tan, L. & Chen, J. A class of iterative greedy algorithms related to Blaschke product. Sci. China Math. 64, 2703–2718 (2021). https://doi.org/10.1007/s11425-020-1706-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-020-1706-5

Keywords

MSC(2020)

Navigation