Skip to main content
Log in

Large time behavior and pointwise estimates for compressible Euler equations with damping

  • Articles
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The Cauchy problem of the compressible Euler equations with damping in multi-dimensions is considered when the initial perturbation in H 3-norm is small. First, by using two new energy functionals together with Green’s function and iteration method, we improve the L 2-decay rate in Tan and Wang (2013) and Tan and Wu (2012) when \(\left\| {(\rho _0 - \bar \rho ,m)} \right\|_{\dot B_{1,\infty }^{ - s} \times \dot B_{1,\infty }^{ - s + 1} } \) with s ∈ [0, 2] is bounded. In particular, it holds that the density converges to its equilibrium state at the rate \((1 + t)^{ - \tfrac{3} {4} - \tfrac{s} {2}} \) in L 2-norm and the momentum decays at the rate \((1 + t)^{ - \tfrac{5} {4} - \tfrac{s} {2}} \) in L 2-norm. Moreover, under a weaker and more general condition on the initial data, we show that the density and the momentum have different pointwise estimates in dimension d with d ⩾ 3 on both space variable x and time variable t as \(\left| {D_x^\alpha (\rho - \bar \rho )} \right| \leqslant C(1 + t)^{ - \tfrac{d} {2} - \tfrac{{\left| \alpha \right|}} {2}} (1 + \tfrac{{\left| x \right|^2 }} {{1 + t}})^{ - r} \) with \(r > \tfrac{d} {2} \) and \(\left| {D_x^\alpha m} \right| \leqslant C(1 + t)^{ - \tfrac{d} {2} - \tfrac{{\left| \alpha \right| + 1}} {2}} (1 + \tfrac{{\left| x \right|^2 }} {{1 + t}})^{ - \tfrac{d} {2}} \) by a more elaborate analysis on the Green’s function. These results improve those in Wang and Yang (2001), where the density and the velocity (the momentum) have the same pointwise estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deng S J, Wang WK. Pointwise decaying rate of large perturbation around viscous shock for scalar viscous conservation law. Sci China Math, 2013, 56: 729–736

    Article  MATH  MathSciNet  Google Scholar 

  2. Duan R J, Liu H X, Ukai S, et al. Optimal L p-L q convergence rates for the compressible Navier-Stokes equations with potential force. J Differential Equations, 2007, 238: 220–233

    Article  MATH  MathSciNet  Google Scholar 

  3. Duan R J, Ukai S, Yang T, et al. Optimal convergence rates for the compressible Navier-Stokes equations with potential forces. Math Models Methods Appl Sci, 2007, 17: 737–758

    Article  MATH  MathSciNet  Google Scholar 

  4. Fang D Y, Xu J. Existence and asymptotic behavior of C1 solutions to the multi-dimensional compressible Euler equations with damping. Nonlinear Anal, 2009, 70: 244–261

    Article  MATH  MathSciNet  Google Scholar 

  5. Guo Y, Wang Y J. Decay of dissipative equations and negative Sobolev spaces. Comm Partial Differential Equations, 2012, 37: 2165–2208

    Article  MATH  MathSciNet  Google Scholar 

  6. Hsiao L, Liu T P. Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping. Comm Math Phys, 1992, 143: 599–605

    Article  MATH  MathSciNet  Google Scholar 

  7. Hsiao L, Luo T. Nonlinear diffusive phenomena of solutions for the system of compressible adiabatic flow through porous media. J Differential Equations, 1996, 125: 329–365

    Article  MATH  MathSciNet  Google Scholar 

  8. Hsiao L, Luo T, Yang T. Global BV solutions of compressible Euler equations with spherical symmetry and damping. J Differential Equations, 1998, 146: 203–225

    Article  MATH  MathSciNet  Google Scholar 

  9. Hsiao L, Pan R H. Initial boundary value problem for the system of compressible adiabatic flow through porous media. J Differential Equations, 1999, 159: 280–305

    Article  MATH  MathSciNet  Google Scholar 

  10. Hsiao L, Pan R H. The damped p-system with boundary effects. Contemp Math, 2000, 255: 109–123

    MathSciNet  Google Scholar 

  11. Huang F M, Marcati P, Pan R H. Convergence to Barenblatt solution for the compressible Euler equations with damping and vacuum. Arch Ration Mech Anal, 2005, 176: 1–24

    Article  MATH  MathSciNet  Google Scholar 

  12. Huang F M, Pan R H. Asymptotic behavior of the solutions to the damped compressible Euler equations with vacuum. J Differential Equations, 2006, 220: 207–233

    Article  MATH  MathSciNet  Google Scholar 

  13. Huang F M, Pan R H. Convergence rate for compressible Euler equations with damping and vacuum. Arch Ration Mech Anal, 2003, 166: 359–376

    Article  MATH  MathSciNet  Google Scholar 

  14. Huang F M, Pan R H, Wang Z. L 1 convergence to the Barenblatt solution for compressible Euler equations with damping. Arch Ration Mech Anal, 2011, 200: 665–689

    Article  MATH  MathSciNet  Google Scholar 

  15. Huang F M, Wang Y, Wang Y, et al. Vanishing viscosity of isentropic Navier-Stokes equations for interacting shocks. Sci China Math, 2015, 58: 653–672

    Article  MathSciNet  Google Scholar 

  16. Huang M G, Tang M X, Yu J S. Wolbachia infection dynamics by reaction-diffusion equations. Sci China Math, 2015, 58: 77–96

    Article  MATH  MathSciNet  Google Scholar 

  17. Jiang M N, Zhu C J. Convergence to strong nonlinear diffusion waves for solutions to p-system with damping on quadrant. J Differential Equations, 2009, 246: 50–77

    Article  MATH  MathSciNet  Google Scholar 

  18. Jiang S, Li F C. Zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system. Sci China Math, 2014, 57: 2153–2162

    Article  MathSciNet  Google Scholar 

  19. Li H L, Zhang T. Large time behavior of solutions to 3D compressible Navier-Stokes-Poisson system. Sci China Math, 2012, 55: 159–177

    Article  MATH  MathSciNet  Google Scholar 

  20. Liao J, Wang W K, Yang T. L p convergence rates of planar waves for multi-dimensional Euler equations with damping. J Differential Equations, 2009, 247: 303–329

    Article  MATH  MathSciNet  Google Scholar 

  21. Liu T P. Pointwise convergence to shock waves for viscous conservation laws. Comm Pure Appl Math, 1997, 11: 1113–1182

    Article  Google Scholar 

  22. Liu T P, Wang W K. The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimension. Comm Math Phys, 1998, 196: 145–173

    Article  MATH  MathSciNet  Google Scholar 

  23. Liu T P, Zeng Y. Large time behavior of solutions general quasilinear hyperbolic-parabolic systems of conservation laws. Mem Amer Math Soc, 1997

    Google Scholar 

  24. Marcati P, Mei M. Convergence to nonlinear diffusion waves for solutions of the initial boundary value problem to the hyperbolic conservation laws with damping. Quart Appl Math, 2000, 58: 763–783

    MATH  MathSciNet  Google Scholar 

  25. Marcati P, Pan R H. On the diffusive profiles for the system of compressible adiabatic flow through porous media. SIAM J Math Anal, 2001, 33: 790–826

    Article  MATH  MathSciNet  Google Scholar 

  26. Nishihara K, Wang W K, Yang T. L p-convergence rate to nonlinear diffusion waves for p-system with damping. J Differential Equations, 2000, 161: 191–218

    Article  MATH  MathSciNet  Google Scholar 

  27. Nishihara K, Yang T. Boundary effect on asymptotic behavior of solutions to the p-system with damping. J Differential Equations, 1999, 156: 439–458

    Article  MATH  MathSciNet  Google Scholar 

  28. Pan R H. Darcy’s law as long time limit of adiabatic porous media flows. J Differential Equations, 2006, 220: 121–146

    Article  MATH  MathSciNet  Google Scholar 

  29. Pan R H, Zhao K. Initial boundary value problem for compressible Euler equations with damping. Indiana Univ Math J, 2008, 57: 2257–2282

    Article  MATH  MathSciNet  Google Scholar 

  30. Pan R H, Zhao K. The 3D compressible Euler equations with damping in a bounded domain. J Differential Equations, 2009, 246: 581–596

    Article  MATH  MathSciNet  Google Scholar 

  31. Sideris T C, Thomases B, Wang D H. Long time behavior of solutions to the 3D compressible Euler equations with damping. Comm Partial Differential Equations, 2003, 28: 795–816

    Article  MATH  MathSciNet  Google Scholar 

  32. Tan Z, Wang Y. Global solution and large-time behavior of the 3D compressible Euler equations with damping. J Differential Equations, 2013, 254: 1686–1704

    Article  MATH  MathSciNet  Google Scholar 

  33. Tan Z, Wu G C. Large time behavior of solutions for compressible Euler equations with damping in R3. J Differential Equations, 2012, 252: 1546–1561

    Article  MATH  MathSciNet  Google Scholar 

  34. Wang W K, Wu Z G. Pointwise estimates of solution for the Navier-Stokes-Poisson equations in multi-dimensions. J Differential Equations, 2010, 248: 1617–1636

    Article  MATH  MathSciNet  Google Scholar 

  35. Wang W K, Yang T. The pointwise estimates of solutions for Euler-Equations with damping in multi-dimensions. J Differential Equations, 2001, 173: 410–450

    Article  MATH  MathSciNet  Google Scholar 

  36. Wang W K, Yang X F. The pointwise estimates of solutions to the isentropic Navier-Stokes equations in even spacedimensions. J Hyperbolic Diff Equ, 2005, 2: 673–695

    Article  MATH  Google Scholar 

  37. Wu Z G, Wang W K. Pointwise estimates of solution for non-isentropic Navier-Stokes-Poisson equations in multidimensions. Acta Math Sci Ser B, 2012, 32: 1681–1702

    Article  MATH  Google Scholar 

  38. Wu Z G, Wang W K. Decay of the solution for the bipolar Euler-Poisson system with damping in dimension three. Comm Math Sci, 2014, 12: 1257–1276

    Article  MATH  Google Scholar 

  39. Yang J W, Wang S. Convergence of compressible Navier-Stokes-Maxwell equations to incompressible Navier-Stokes equations. Sci China Math, 2014, 57: 2153–2162

    Article  MATH  MathSciNet  Google Scholar 

  40. Yang X F, Wang W K. The suppressible property of the solution for three-dimensional Euler equations with damping. Nonlinear Anal Real World Appl, 2007, 8: 53–61

    Article  MATH  MathSciNet  Google Scholar 

  41. Zeng H H. Multidimensional stability of traveling fronts in monostable reaction-diffusion equations with complex perturbations. Sci China Math, 2014, 57: 353–366

    Article  MATH  MathSciNet  Google Scholar 

  42. Zhao C D, Duan J Q. Convergence of global attractors of a 2D non-Newtonian system to the global attractor of the 2D Navier-Stokes system. Sci China Math, 2013, 56: 253–265

    Article  MATH  MathSciNet  Google Scholar 

  43. Zhao H J. Convergence to strong nonlinear diffusion waves for solutions of p-system with damping. J Differential Equations, 2001, 174: 200–236

    Article  MATH  MathSciNet  Google Scholar 

  44. Zhu C J. Asymptotic Behavior of Solutions for p-System with Relaxation. J Differential Equations, 2002, 180: 1546–1561

    Article  Google Scholar 

  45. Zhu C J. Convergence rates to nonlinear diffusion waves for weak entropy solutions to p-system with damping. Sci China Ser A, 2003, 46: 562–575

    MATH  MathSciNet  Google Scholar 

  46. Zhu C J, Jiang M N. L p-decay rates to nonlinear diffusion waves for p-system with nonlinear damping. Sci China Ser A, 2006, 49: 721–739

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiKe Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Wang, W. Large time behavior and pointwise estimates for compressible Euler equations with damping. Sci. China Math. 58, 1397–1414 (2015). https://doi.org/10.1007/s11425-015-5013-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-015-5013-5

Keywords

MSC(2010)

Navigation