Skip to main content
Log in

Optimal Model Average Prediction in Orthogonal Kriging Models

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

The main objective of this paper is to consider model averaging methods for kriging models. This paper proposes a Mallows model averaging procedure for the orthogonal kriging model and demonstrate the asymptotic optimality of the model averaging estimators in terms of mean square error. Simulation studies are conducted to evaluate the performance of the proposed method and compare it with the competitors to demonstrate its superiority. The authors also analyse a real dataset for an illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oliver M and Webster R, A tutorial guide to geostatistics: Computing and modelling variograms and kriging, CATENA, 2014, 113): 56–69.

    Article  Google Scholar 

  2. Akaike H, Information theory and an extension of the maximum likelihood principle, Second International Symposium on Information Theory, 1973, 267–281.

  3. Mallows C L, Some comments on Cp, Technometrics, 1973, 15(4): 661–673.

    Google Scholar 

  4. Allen D M, The relationship between variable selection and data agumentation and a method for prediction, Technometrics, 1974, 16(1): 125–127.

    Article  MathSciNet  Google Scholar 

  5. Craven P and Wahba G, Smoothing noisy data with spline functions, Numerische Mathematik, 1978, 31(4): 377–403.

    Article  MathSciNet  Google Scholar 

  6. Rasmussen C E and Williams C, Gaussian Processes for Machine Learning, MIT Press, Cambridge, 2006.

    Google Scholar 

  7. Sacks J, Schiller S B, and Welch W J, Designs for computer experiments, Technometrics, 1989, 31(1): 41–47.

    Article  MathSciNet  Google Scholar 

  8. Welch W J, Buck R J, Sacks J, et al., Screening, predicting, and computer experiments, Technometrics, 1992, 34(1): 15–25.

    Article  Google Scholar 

  9. Linkletter C, Bingham D, Hengartner N, et al., Variable selection for gaussian process models in computer experiments, Technometrics, 2006, 48(4): 478–490.

    Article  MathSciNet  Google Scholar 

  10. Joseph V R, Hung Y, and Sudjianto A, Blind kriging: A new method for developing metamodels, Journal of Mechanical Design, 2008, 130(3): 350–353.

    Article  Google Scholar 

  11. Kennedy M C and O’Hagan A, Predicting the output from a complex computer code when fast approximations are available, Biometrika, 2000, 87(1): 1–13.

    Article  MathSciNet  Google Scholar 

  12. Hodges J S and Reich B J, Adding spatially-correlated errors can mess up the fixed effect you love, The American Statistician, 2010, 64(4): 325–334.

    Article  MathSciNet  Google Scholar 

  13. Paciorek C J, The importance of scale for spatial-confounding bias and precision of spatial regression estimators, Statistical Science, 2010, 25(1): 107–125.

    Article  MathSciNet  Google Scholar 

  14. Plumlee M and Joseph V R, Orthogonal Gaussian process models, Statistica Sinica, 2018, 28): 601–619.

    MathSciNet  Google Scholar 

  15. Clyde M and George E I, Model uncertainty, Statistical Science, 2004, 19(1): 81–94.

    Article  MathSciNet  Google Scholar 

  16. Draper D, Assessment and propagation of model uncertainty, Journal of the Royal Statistical Society (Series B), 1995, 57(1): 45–70.

    MathSciNet  Google Scholar 

  17. Hoeting J A, Madigan D, Raftery A E, et al., Bayesian model averaging: A tutorial, Statistical Science, 1999, 14(4): 382–417.

    MathSciNet  Google Scholar 

  18. Hjort N and Claeskens G, Frequentist model average estimators, Journal of the American Statistical Association, 2003, 98): 879–899.

    Article  MathSciNet  Google Scholar 

  19. Claeskens G and Hjort N L, Model Selection and Model Averaging, Cambridge University Press, Cambridge, 2008.

    Google Scholar 

  20. Buckland S T, Burnham K P, and Augustin N H, Model selection: An integral part of inference, Biometrics, 1997, 53): 603–618.

    Article  Google Scholar 

  21. Hansen B E, Least squares model averaging, Econometrica, 2007, 75(4): 1175–1189.

    Article  MathSciNet  Google Scholar 

  22. Hansen B E and Racine J S, Jackknife model averaging, Journal of Econometrics, 2012, 167(1): 38–46.

    Article  MathSciNet  Google Scholar 

  23. Liang H, Zou G H, Wan A T K, et al., Optimal weight choice for frequentist model average estimators, Journal of the American Statistical Association, 2011, 106): 1053–1066.

    Article  MathSciNet  Google Scholar 

  24. Zhang X, Yu D, Zou G, et al., Optimal model averaging estimation for generalized linear models and generalized linear mixed-effects models, Journal of the American Statistical Association, 2016, 111(516): 1775–1790.

    Article  MathSciNet  Google Scholar 

  25. Fang F, Lan W, Tong J, et al., Model averaging for prediction with fragmentary data, Journal of Business & Economic Statistics, 2019, 37(3): 517–527.

    Article  MathSciNet  Google Scholar 

  26. Wang W, Zhang Q, Zhang X, et al., Model averaging based on generalized method of moments, Economics Letters, 2021, 200): 109735.

    Article  MathSciNet  Google Scholar 

  27. Zhang X, Optimal model averaging based on generalized method of moments, Statistica Sinica, 2021, 31(4): 2103–2122.

    MathSciNet  Google Scholar 

  28. Li X, Zou G, Zhang X, et al., Least squares model averaging based on generalized cross validation, Acta Mathematicae Applicatae Sinica, English Series, 2021, 37(3): 495–509.

    Article  MathSciNet  Google Scholar 

  29. Liu H and Zhang X, Frequentist model averaging for undirected Gaussian graphical models, Biometrics, 2023, 79(3): 2050–2062.

    Article  MathSciNet  Google Scholar 

  30. Feng Y, Liu Q, Yao Q, et al., Model averaging for nonlinear regression models, Journal of Business & Economic Statistics, 2022, 40(2): 785–798.

    Article  MathSciNet  Google Scholar 

  31. Ando T and Li K C, A weight-relaxed model averaging approach for high-dimensional generalized linear models, The Annals of Statistics, 2017, 45(6): 2654–267.

    Article  MathSciNet  Google Scholar 

  32. Zhang X and Wang W, Optimal model averaging estimation for partially linear models, Statistica Sinica, 2019, 29(2): 693–718.

    MathSciNet  Google Scholar 

  33. Zhu R, Wan A T, Zhang X, et al., A Mallows-type model averaging estimator for the varying-coefficient partially linear model, Journal of the American Statistical Association, 2019, 114(526): 882–892.

    Article  MathSciNet  Google Scholar 

  34. Zhao Z and Zou G, Average estimation of semiparametric models for high-dimensional longitudinal data, Journal of Systems Science & Complexity, 2020, 30(6): 2013–2047.

    Article  MathSciNet  Google Scholar 

  35. Fang F, Li J, and Xia X, Semiparametric model averaging prediction for dichotomous response, Journal of Econometrics, 2022, 229(2): 219–245.

    Article  MathSciNet  Google Scholar 

  36. Liu S, Zhang H, and Zhang J, Model averaging estimation for partially linear functional score models, arXiv: 2105.00953, 2021.

  37. Bai Y, Wang S, and Zhang X, Foreign trade survey data: Do they help in forecasting exports and imports?, Journal of Systems Science & Complexity, 2022, 35(5): 1839–1862.

    Article  Google Scholar 

  38. Yuan H, Lin P, Tao J, et al., Model averaging multistep prediction in an infinite order autoregressive process, Journal of Systems Science & Complexity, 2022, 35(5): 1875–1901.

    Article  MathSciNet  Google Scholar 

  39. Liu Y, Zou J, Zhao S, et al., Model averaging estimation for varying-coefficient single-index models, Journal of Systems Science & Complexity, 2022, 35(1): 264–282.

    Article  MathSciNet  Google Scholar 

  40. Zhang J and Taflanidis A, Bayesian model averaging for kriging regression structure selection, Probabilistic Engineering Mechanics, 2019, 56): 58–70.

    Article  Google Scholar 

  41. Liao J, Zou G, and Gao Y, Spatial Mallows model averaging for geostatistical models, Canadian Journal of Statistics, 2019, 47(3): 336–351.

    Article  MathSciNet  Google Scholar 

  42. Santner T J, Williams B J, and Notz W I, The Design and Analysis of Computer Experiments, Springer, New York, 2003.

    Book  Google Scholar 

  43. Hoeting J A, Davis R A, Merton A A, et al., Model selection for geostatistical models, Ecological Applications, 2006, 16(1): 87–98.

    Article  Google Scholar 

  44. Morris M D, Mitchell T J, and Ylvisaker D, Bayesian design and analysis of computer experiments: Use of derivatives in surface prediction, Technometrics, 1993, 35(3): 243–255.

    Article  MathSciNet  Google Scholar 

  45. Fang K T, Li R, and Sudjianto A, Design and Modeling for Computer Experiments, Chapman and Hall/CRC, Boca Raton, 2006.

    Google Scholar 

  46. Wan A T, Zhang X, and Zou G, Least squares model averaging by Mallows criterion, Journal of Econometrics, 2010, 156(2): 277–283.

    Article  MathSciNet  Google Scholar 

  47. Chang C H, Huang H C, and Ing C K, Asymptotic theory of generalized information criterion for geostatistical regression model selection, The Annals of Statistics, 2014, 42(6): 2441–2468.

    Article  MathSciNet  Google Scholar 

  48. Zhang X, Zou G, and Liang H, Model averaging and weight choice in linear mixed-effects models, Biometrika, 2015, 101(1): 205–218.

    Article  MathSciNet  Google Scholar 

  49. Gao Y, Zhang X, Wang S, et al., Frequentist model averaging for threshold models, Annals of the Institute of Statistical Mathematics, 2019, 71): 275–306.

    Article  MathSciNet  Google Scholar 

  50. Whittle P, Bounds for the moments of linear and quadratic forms in independent variables, Theory of Probability & Its Applications, 1960, 5(3): 302–305.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinmin Li.

Ethics declarations

The authors declare no conflict of interest.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant No. 11871294.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., He, J., Liang, H. et al. Optimal Model Average Prediction in Orthogonal Kriging Models. J Syst Sci Complex 37, 1080–1099 (2024). https://doi.org/10.1007/s11424-024-2333-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-024-2333-y

Keywords

Navigation