Skip to main content
Log in

Model Averaging Estimation for Varying-Coefficient Single-Index Models

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

The varying-coefficient single-index model (VCSIM) is widely used in economics, statistics and biology. A model averaging method for VCSIM based on a Mallows-type criterion is proposed to improve prodictive capacity, which allows the number of candidate models to diverge with sample size. Under model misspecification, the asymptotic optimality is derived in the sense of achieving the lowest possible squared errors. The authors compare the proposed model averaging method with several other classical model selection methods by simulations and the corresponding results show that the model averaging estimation has a outstanding performance. The authors also apply the method to a real dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xia Y and Li W K, On single-index coefficient regression models, Journal of the American Statistical Association, 1999, 94(448): 1275–1285.

    Article  MathSciNet  MATH  Google Scholar 

  2. Härdle W, Müller M, Sperlich S, et al., Nonparametric and Semiparametric Models, Springer-Verlag, Berlin, 2004.

    Book  MATH  Google Scholar 

  3. Wong H, Wai C I, and Zhang R, Varying-coefficient single-index model, Computational Statistics & Data Analysis, 2008, 52(3): 1458–1476.

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhao Y, Xüe L, and Feng S, Semiparametric estimation of the single-index varying-coefficient model, Communications in Statistics — Theory and Methods, 2016, 46(9): 4311–4326.

    Article  MathSciNet  MATH  Google Scholar 

  5. Ichimura H, Semiparametric least squares and weighted sls estimation of single-index models, Journal of Econometrics, 1993, 58(1): 71–120.

    Article  MathSciNet  MATH  Google Scholar 

  6. Härdle W, Hall P, and Ichimura H, Optimal smoothing in single-index models, The Annals of Statistics, 1993, 21(1): 157–178.

    Article  MathSciNet  MATH  Google Scholar 

  7. Stoker T M, Consistent estimation of scaled coefficients, Econometrica, 1986, 54(6): 1461–1481.

    Article  MathSciNet  MATH  Google Scholar 

  8. Härdle W and Stoker T M, Investigating smooth multiple regression by the method of average derivatives, Journal of the American Statistical Association, 1989, 84(408): 986–995.

    MathSciNet  MATH  Google Scholar 

  9. Li K C, Sliced inverse regression for dimension reduction, Journal of the American Statistical Association, 1991, 86(414): 316–327.

    Article  MathSciNet  MATH  Google Scholar 

  10. Wahba G, Smoothing noisy data with spline function, Numerische Mathematik, 1975, 24: 383–393.

    Article  MathSciNet  MATH  Google Scholar 

  11. Wahba G, Bayesian confidence-intervals for the cross-validated smoothing spline, Journal of the Royal Statistical Society, Series B, 1983, 45(1): 133–150.

    MathSciNet  MATH  Google Scholar 

  12. Wahba G, A comparison of gcv and gml for choosing the smoothing parameter in the generalized spline smoothing problem, The Annals of Mathematical Statistics, 1985, 13(4): 1378–1402.

    MathSciNet  MATH  Google Scholar 

  13. Nadaraya E A, On estimating regression, Theory Probability and Its Application, 1964, 9(1): 141–142.

    Article  MATH  Google Scholar 

  14. Watson G S, Smooth regression analysis, Sankhya: The Indian Journal of Statistics, Series A, 1964, 26(4): 359–372.

    MathSciNet  MATH  Google Scholar 

  15. Fan J, Design adaptive nonparametric regression, Journal of the American Statistical Association, 1991, 87(420): 998–1004.

    Article  MathSciNet  MATH  Google Scholar 

  16. Fan J, Local linear regression smoothers and their minimax efficiency, The Annals of Statistics, 1993, 21(1): 196–216.

    Article  MathSciNet  MATH  Google Scholar 

  17. Fan J and Gijbels I, Local Polynomial Modeling and Its Application, Chapman and Hall, London, 1996.

    MATH  Google Scholar 

  18. Yu Y and Ruppert D, Penalized spline estimation for partially linear single-index models, Journal of the American Statistical Association, 2002, 97(460): 1042–1054.

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhou Z H, When semi-supervised learning meets ensemble learning, Frontiers of Electrical & Electronic Engineering in China, 2011, 6(1): 6–16.

    Article  Google Scholar 

  20. Fersini E, Messina E, and Pozzi F A, Sentiment analysis: Bayesian ensemble learning, Decision Support Systems, 2014, 68: 26–38.

    Article  Google Scholar 

  21. Liu B, Wang S, Ren L, et al., irspot-el: Identify recombination spots with an ensemble learning approach, Bioinformatics, 2017, 33(1): 35–41.

    Article  Google Scholar 

  22. Hansen B E, Least squares model averaging, Econometrica, 2007, 75(4): 1175–1189.

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang X, Yu D, Zou G, et al., Optimal model averaging estimation for generalized linear models and generalized linear mixed-effects models, Journal of the American Statistical Association, 2016, 111(516): 1775–1790.

    Article  MathSciNet  Google Scholar 

  24. Akaike H, Information theory and an extension of the maximum likelihood principle, Breakthroughs in Statistics, 1973, 1: 610–624.

    MATH  Google Scholar 

  25. Schwarz G, Estimating the dimension of a model, The Annals of Statistics, 1978, 6(2): 461–464.

    Article  MathSciNet  MATH  Google Scholar 

  26. Mallows C L, Some comments on cp, Technometrics, 1973, 42(1): 87–94.

    Google Scholar 

  27. Wan A T K, Zhang X, and Zou G, Least squares model averaging by mallows criterion, Journal of Econometrics, 2010, 156(2): 277–283.

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhu R, Wan A T K, Zhang X, et al., A mallows-type model averaging estimator for the varying-coefficient partially linear model, Journal of the American Statistical Association, 2019, 114(526): 882–892.

    Article  MathSciNet  MATH  Google Scholar 

  29. Hoeting J A, Madigan D, Raftery A E, et al., Bayesian model averaging: A tutorial, Statistical Science, 1999, 14: 382–417.

    MathSciNet  MATH  Google Scholar 

  30. Wang H, Zhang X, and Zou G, Frequentist model averaging estimation: A review, Journal of Systems Science and Complexity, 2009, 22(4): 732–748.

    Article  MathSciNet  MATH  Google Scholar 

  31. Buckland S T, Burnham K P, and Augustin N H, Model selection: An integral part of inference, Biometrics, 1997, 53: 603–618.

    Article  MATH  Google Scholar 

  32. Claeskens G, Croux C, and van K J, Variable selection for logistic regression using a prediction-focused information criterion, Biometrics, 2006, 62: 972–979.

    Article  MathSciNet  MATH  Google Scholar 

  33. Liang H, Zou G, Wan A T K, et al., Optimal weight choice for frequentist model average estimators, Journal of the American Statistical Association, 2011, 106: 1053–1066.

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhao Z H and Zou G H, Average estimation of semiparametric models for high-dimensional longitudinal data, Journal of Systems Science and Complexity, 2020, 33(6): 2013–2047.

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang X, Zheng Y, and Wang S, A demand forecasting method based on stochastic frontier analysis and model average: An application in air travel demand forecasting, Journal of Systems Science and Complexity, 2019, 32(4): 615–633.

    Article  MathSciNet  Google Scholar 

  36. Yuan Z and Yang Y, Combining linear regression models: When and how. Journal of the American Statistical Association, 2005, 100: 1202–1214.

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang X, Lu Z, and Zou G, Adaptively combined forecasting for discrete response time series, Journal of Econometrics, 2013, 176: 80–91.

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu C, Distribution theory of the least squares averaging estimator, Journal of Econometrics, 2015, 186: 142–159.

    Article  MathSciNet  MATH  Google Scholar 

  39. Yin S, Liu C, and Lin C, Focused information criterion and model averaging for large panels with a multifactor error structure, Journal of Business & Economic Statistics, 2019, forthcoming.

  40. Li D, Linton O, and Lu Z, A flexible semiparametric forecasting model for time series, Journal of Econometrics, 2015, 187: 345–357.

    Article  MathSciNet  MATH  Google Scholar 

  41. Hristache M, Juditsky A, and Spokoiny V, Direct estimation of the index coefficient in a single-index model, The Annals of Statistics, 2001, 29(3): 595–623.

    Article  MathSciNet  MATH  Google Scholar 

  42. Fan J and Zhang W, Statistical estimation in varying coefficient models, The Annals of Statistics, 1999, 27(5): 1491–1518.

    Article  MathSciNet  MATH  Google Scholar 

  43. Hansen B E and Racine J S, Jackknife model averaging, Journal of Econometrics, 2012, 167(1): 38–46.

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang X, Wan A T K, and Zou G, Model averaging by jackknife criterion in models with dependent data, Journal of Econometrics, 2013, 174(2): 82–94.

    Article  MathSciNet  MATH  Google Scholar 

  45. Hjort N L and Claeskens G, Frequentist model average estimators, Journal of the American Statistical Association, 2003, 98(464): 879–899.

    Article  MathSciNet  MATH  Google Scholar 

  46. Hjort N L and Claeskens G, Rejoinder to the discussion of “frequentist model average estimators” and “focused information criterion”, Journal of the American Statistical Association, 2003, 98(464): 938–945.

    Article  Google Scholar 

  47. Hjort N L and Claeskens G, Focused information criteria and model averaging for the cox hazard regression model, Journal of the American Statistical Association, 2006, 101(476): 1449–1464.

    Article  MathSciNet  MATH  Google Scholar 

  48. Li K C, Asymptotic optimality for cp, cl, cross-validation and generalized cross-validation: Discrete dindex set, The Annals of Statistics, 1987, 15(3): 958–975.

    Article  MathSciNet  MATH  Google Scholar 

  49. Li C, Li Q, Racine J S, et al., Optimal model averaging of varying coefficient models, Statistica Sinica, 2018, 28(4): 2795–2809.

    MathSciNet  MATH  Google Scholar 

  50. Yu Z, He B, and Chen M, Empirical likelihood for generalized partially linear single-index models, Communications in Statistics, 2014, 43: 4156–4163.

    Article  MathSciNet  MATH  Google Scholar 

  51. Xie S, Wan A T K, and Zhou Y, Quantile regression methods with varying-coefficient models for censored data, Computational Statistics & Data Analysis, 2015, 88: 154–172.

    Article  MathSciNet  MATH  Google Scholar 

  52. Gao Y, Zhang X, Wang S, et al., Frequentist model averaging for threshold models, Annals of the Institute of Statistical Mathematics, 2018, 71(2): 275–306.

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang X, Model averaging and its applications, PhD thesis, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahui Zou.

Additional information

This research was supported by the National Nature Science Foundation of China, under Grant Nos. 12001559 and 11971324 and the Ministry of Education of Humanities and Social Science project, under Grant No. 19YJC910008.

This paper was recommended for publication by Editor ZHANG Xinyu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zou, J., Zhao, S. et al. Model Averaging Estimation for Varying-Coefficient Single-Index Models. J Syst Sci Complex 35, 264–282 (2022). https://doi.org/10.1007/s11424-021-0158-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-021-0158-5

Keywords

Navigation