Skip to main content

Advertisement

Log in

Monitoring benthic microflora in river bed sediments: a case study in the Anllóns River (Spain)

  • Sediments, Sec 4 • Sediment-Ecology Interactions • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The objectives of this study were to investigate the abundance and composition of the superficial biofilm on the bed sediments of the Anllóns River (NW Spain), to evaluate the relationships between biochemical parameters and biological methods based on identification and counting, and to explore the relationships between biofilm growth and the properties of the sedimentary habitat, mainly the trophic state.

Materials and methods

Bed sediment samples (0–5 cm) were collected in two different seasons (winter and summer) at four sampling sites along the river course. Physicochemical properties of pore waters and sediments were determined. Biological properties included the determination of dehydrogenase activity (DHA) and phytopigment (Chl a Chl b and total carotenoids) concentrations, as well as taxonomic identification. For taxonomic identification, two sampling methods were compared: the Pasteur pipette method and a mini-corer method. Total and relative algal abundances (TA and RA, respectively) and genus richness were calculated. The relationships between the different variables were examined using Pearson correlations and principal component analysis.

Results and discussion

The main taxa belonged to Chlorophyta, Cyanophyta, Euglenophyta, and Heterokontophyta. The most abundant class was Bacillariophyceae, which represents >86 % of the total abundances in the superficial sediments. The highest total algal abundance and genus richness were observed in summer at the river mouth, where DHA and phytopigment concentrations were also the highest. The statistical analysis revealed positive correlations between TA and the biochemical parameters (DHA and phytopigments) as well as positive relationships of these three parameters with the physicochemical properties of the sediments, such as electrical conductivity, and the concentrations of fine particles, C, N, S, and total P.

Conclusions

The results of this study reveal the positive relationships between the biochemical properties (phytopigments and respiratory activity) and total algal abundances determined by taxonomic identification and counting. All of these properties presented evidence of a clear influence of the nutrients and organic matter contents of the sediments, pointing to the importance of the site conditions, particularly the trophic state, in the development of benthic microflora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aberle N, Wiltshire KH (2006) Seasonality and diversity patterns of microphytobenthos in a mesotrophic lake. Arch Hydrobiol 167:447–465

    Article  CAS  Google Scholar 

  • Aguilera A, Zettler E, Gómez F, Amaral-Zettler L, Rodríguez N, Amils R (2007) Distribution and seasonal variability in the benthic eukaryotic community of Río Tinto (SW, Spain), an acidic, high metal extreme environment. Syst Appl Microbiol 30:531–546

    Article  CAS  Google Scholar 

  • American Public Health Association (APHA) (2005) Standard methods for the examination of water and wastewater. 21st ed, American Water Works Association; Water Pollution Control Federation. Washington, USA

  • Barral MT, Devesa-Rey R, Ruiz B, Díaz-Fierros F (2012) Evaluation of phosphorous species in the bed sediments of an Atlantic Basin: bioavailability and relation with surface active components of the sediment. Soil Sed Contam 21:1–18

    Article  CAS  Google Scholar 

  • Bergamaschi BA, Tsamakis E, CEIL RG, Eglinton TI, Montlucon DB, Hedges JI (1997) The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments. Geochim Cosmochim Acta 61:1247–1260

    Article  CAS  Google Scholar 

  • Biggs BJF (2000) Eutrophication of streams and rivers: dissolved nutrient–chlorophyll relationships for benthic algae. J N Am Benthol Soc 19:17–31

    Article  Google Scholar 

  • Biggs B, Close M (1989) Periphyton biomass dynamics in gravel bed rivers: the relative effects of flows and nutrients. Freshwater Biol 22:209–231

    Article  CAS  Google Scholar 

  • Blanck H, Wangberg S-A (1988) Validity of an ecotoxicological test system: short-term and long-term effects of arsenate on marine periphyton communities in laboratory systems. Can J Fish Aquat Sci 45:1807–1815

    Article  CAS  Google Scholar 

  • Blanck H, Wangberg S-A (1991) Pattern of cotolerance in marine periphyton communities established under arsenate stress. Aquat Toxicol 218:1–14

    Article  Google Scholar 

  • Blenkinsopp SA, Lock MA (1990) The measurement of electron transport system activity in river biofilms. Water Res 24:441–445

    Article  CAS  Google Scholar 

  • Broberg A (1985) A modified method for studies of electron transport system activity in freshwater sediments. Hydrobiologia 120:181–187

    Article  CAS  Google Scholar 

  • Chételat J, Pick FR, Morin A (1999) Periphyton biomass and community composition in rivers of different nutrient status. Can J Fish Aquat Sci 56:560–569

    Article  Google Scholar 

  • Chételat J, Pick FR, Hamilton PB (2006) Potamoplankton size structure and taxonomic composition: influence of river size and nutrient concentrations. Limnol Oceanogr 51:681–689

    Article  Google Scholar 

  • Colijn F, De Jonge VN (1984) Primary production of microphytobenthos in the Ems-Dollard Estuary. Mar Ecol Prog Ser 14:185–196

    Article  Google Scholar 

  • Cox EJ (1996) Identifications of freshwaters diatoms from live material. Chapman & Hall, Oxford, 158 pp

    Google Scholar 

  • De Brouwer JFC, Wolfstein K, Ruddy GK, Jones TER, Stal LJ (2005) Biogenic stabilization of intertidal sediments: the importance of extracellular polymeric substances produced by benthic diatoms. Microb Ecol 49:501–512

    Article  CAS  Google Scholar 

  • De la Peña S (2003) Biomonitorización de la calidad del agua de ríos de la provincia de A Coruña usando diatomeas. PhD Thesis, University of A Coruña, Spain

  • Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Cont Shelf Res 20:1257–1273

    Article  Google Scholar 

  • Devesa R, Moldes AB, Díaz-Fierros F, Barral MT (2007) Extraction study of algal pigments in river bed sediments by applying factorial designs. Talanta 72:1546–1551

    Article  CAS  Google Scholar 

  • Devesa-Rey R, Barral MT (2012) Allochthonous versus autochthonous naturally occurring organic matter in the Anllóns river bed sediments (Spain). Environ Earth Sci 66:773–782

    Article  CAS  Google Scholar 

  • Devesa-Rey R, Moldes AB, Díaz-Fierros F, Barral MT (2008a) Toxicity of Anllóns River sediment extracts using microtox and the zucconi phytotoxicity test. B Environ Contam Tox 80:225–230

    Article  CAS  Google Scholar 

  • Devesa-Rey R, Paradelo R, Díaz-Fierros F, Barral MT (2008b) Fractionation and bioavailability of arsenic in the bed sediments of the Anllóns River (NW Spain). Water Air Soil Pollut 195:189–199

    Article  CAS  Google Scholar 

  • Devesa-Rey R, Moldes AB, Díaz-Fierros F, Barral MT (2009) Study of phytopigments in river bed sediments: effects of the organic matter, nutrients and metal composition. Environ Monit Assess 153:147–159

    Article  CAS  Google Scholar 

  • Devesa-Rey R, Moldes AB, Sanmartín P, Prieto-Fernández A, Barral MT (2010) Application of an incomplete factorial design for the formation of an autotrophic biofilm on river bed sediments at a microcosms scale. J Soils Sediments 10:1623–1632

    Article  CAS  Google Scholar 

  • Devesa-Rey R, Díaz-Fierros F, Barral MT (2011) Assessment of enrichment factors and grain size influence on the metal distribution in riverbed sediments (Anllóns River, NW Spain). Environ Monit Assess 179:371–388

    Article  CAS  Google Scholar 

  • Dick RP, Breakwell DP, Turco RF (1996) Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. chapter 15. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. SSSA special publication number 49. Soil Science Society of America Inc, Madison

    Google Scholar 

  • Dodds WK, Smith VH, Zander B (1997) Developing nutrient targets to control benthic chlorophyll levels in streams: a case study of the Clark Fork River. Water Res 31:1738–1750

    Article  CAS  Google Scholar 

  • Dodds WK, Smith VH, Lohman K (2002) Nitrogen and phosphorus relationships to benthic algal biomass in temperate streams. Can J Fish Aquat Sci 59:865–874

    Article  Google Scholar 

  • Ector L (1992) Control de la calidad biológica de las aguas superficiales en la red de aforos de Galicia-costa mediante diatomeas bénticas. In: Antelo-Cortizas JM (ed) Calidad del agua en las estaciones de aforo de los ríos de Galicia. Años hidrológicos 1989–90, 1990–91. Fundación Empresa Universidad Gallega (FEUGA). Consellería de Ordenación do Territorio e Obras Públicas, Xunta de Galicia, Spain

    Google Scholar 

  • Ehrlich A (1995) Atlas of the inland-water diatom flora of Israel. Flora Palestina. 166 pp. the Geological-Survey of Israel. The Israel Academy of Sciences and Humanities, Israel

    Google Scholar 

  • EU-WFD (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Off J Europ Comm L 327/1

  • Filimon MN, Nica DV, Ostafe V, Bordean DM, Borozan AB, Vlad DC, Popescu R (2013) Use of enzymatic tools for biomonitoring inorganic pollution in aquatic sediments: a case study (Bor, Serbia). Chem Cent J 7:59

    Article  Google Scholar 

  • Flemming HC (2006) Biological and chemical processes: their role in sediment dynamics and pollutant mobility. Sedymo 2006 Symposium, Book of Abstracts. Hamburg University of Technology, Germany, p 69

    Google Scholar 

  • Flemming HC, Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPs)—part I: structural and ecological aspects. Water Sci Technol 43:1–8

    CAS  Google Scholar 

  • Gainswin BE, House WA, Leadbeater BSC, Armitage PD, Patten J (2006) The effects of sediment size fraction and associated algal biofilms on the kinetics of phosphorus release. Sci Total Environ 360:142–157

    Article  CAS  Google Scholar 

  • Genter RB, Cherry DS, Smith EP, Cairns JJ (1987) Algal-periphyton population and community changes from zinc stress in stream mesocosms. Hydrobiologia 153:87–92

    Article  Google Scholar 

  • Gerbersdorf SU, Wieprecht S (2015) Biostabilization of cohesive sediments: revisiting the role of abiotic conditions, physiology and diversity of microbes, polymeric secretion, and biofilm architecture. Geobiology 13:68–97

    Article  CAS  Google Scholar 

  • Gerbersdorf SU, Jancke T, Westrich B (2007) Sediment properties for assessing the erosion risk of contaminated riverine sites. a comprehensive approach to evaluate sediment properties and their covariance patterns over depth in relation to erosion resistance—first investigations in natural sediments at three contaminated reservoirs. J Soils Sediments 7:25–35

    Article  CAS  Google Scholar 

  • Gerbersdorf SU, Hollert H, Brinkmann M, Wieprecht S, Schüttrumpf H, Manz W (2011) Anthropogenic pollutants affect ecosystem services of freshwater sediments: the need for a “triad plus x” approach. J Soils Sediments 11:1099–1114

    Article  CAS  Google Scholar 

  • Gómez N, Donato JC, Giorgi A, Guasch H, Mateo P, Sabater S (2009) La biota de los ríos: los microorganismos autótrofos. Chap. 12. In: Elosegui A, Sabater S (eds) Conceptos y técnicas en ecología fluvial. Fundación BBVA, Bilbao

    Google Scholar 

  • Guasch H, Navarro E, Serra A, Sabater S (2004) Phosphate limitation influences the sensitivity to copper in periphytic algae. Freshwater Biol 49:463–473

    Article  CAS  Google Scholar 

  • Guitián F, Carballas T (eds) (1976) Técnicas de Análisis de Suelos. Ed. Pico Sacro, Santiago de Compostela, 288 pp

    Google Scholar 

  • Hickman M, Round FE (1970) Primary production and standing crops of epipsammic and epipelic algae. Br Phycol J 5:247–255

    Article  Google Scholar 

  • Hillebrand H, Kahlert M (2001) Effect of grazing and nutrient supply on periphyton biomass and nutrient stoichiometry in habitats of different productivity. Limnol Oceanogr 46:1881–1898

    Article  CAS  Google Scholar 

  • Iglesias ML, Devesa-Rey R, Pérez-Moreira R, Díaz-Fierros F, Barral MT (2011) Phosphorus transfer across boundaries: from basin soils to river bed sediments. J Soils Sediments 11:1125–1134

    Article  CAS  Google Scholar 

  • Lamb AL, Wilson GP, Leng MJ (2006) A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Sci Rev 75:29–57

    Article  CAS  Google Scholar 

  • Lange-Bertalot H (2001) Navicula sensu stricto. 10 genera separated from Navicula sensu lato. Frustulia. In: Lange-bertalot H (ed) Diatoms of Europe 2. Diatoms of the European inland waters and comparable habitats. ARG Gantner Verlag KG, Vaduz, pp 1–526

  • Laurent A, Fennel K, Hu J, Hetland R (2012) Simulating the effects of phosphorus limitation in the Mississippi and Atchafalaya River plumes. Biogeosciences 9:4707–4723

    Article  CAS  Google Scholar 

  • Leadbeater BSC, Callow ME (1992) Formation, composition and physiology of algal biofilm. In: Mello LF, Bott TR, Fletcher M, Caldeville B (eds) Biofilms—science and technology. Kluwer Academic Publishing, Dordrecht, pp 113–124

    Google Scholar 

  • Leavitt PR, Hodgson DA (2001) Sedimentary pigments. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3, Terrestrial, algal and siliceous indicators. Kluwer Academic Publishers, Dordrecht, pp 295–325

    Chapter  Google Scholar 

  • León-Morales CF, Strathman M, Flemming HC (2006) Role of biofilms on the mobility of pollutants in rivers. Sedymo 2006 Symposium, Book of Abstracts. Hamburg University of Technology, Marzo, p 48

    Google Scholar 

  • Long E, MacDonald D, Smith S, Calder F (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19:81–97

    Article  Google Scholar 

  • López Rodríguez MC (2005) Algas doceacuícolas nos ríos de galiza. Adega (Ed) caderno n° 15. Os ríos galegos (II): Calidade e biodiversidade 7–16. ISSN 1137–0262

  • López Rodríguez MC, Penalta Rodríguez M (2004) Aportación al conocimiento de la flora ficológica del Macizo Central Gallego (N.O. España). Anales de Biología de Murcia 46:79–91

    Google Scholar 

  • Lubarsky HV, Hubas C, Chocholek M, Larson F, Manz W, Paterson DM, Gerbersdorf SU (2010) The stabilisation potential of individual and mixed assemblages of natural bacteria and microalgae. PLoS ONE 5(11):e13794

    Article  Google Scholar 

  • Macías Vázquez F, Calvo de Anta R (2009) Niveles genéricos de referencia de metales pesados y otros elementos traza en suelos de Galicia. Consellería de Medio Ambiente e Desenvolvemento Sostible (Xunta de Galicia). Galicia, Spain

  • Margalef R (1955) Comunidades bióticas de las aguas dulces del noroeste de España. Publicaciones del Instituto de Biología Aplicada 21:5–85

    Google Scholar 

  • Margalef R (1956) Algas de agua dulce del norte de España. Publicaciones del Instituto de Biología Aplicada 22:5–47

    Google Scholar 

  • Müller PJ (1977) C/N ratios in Pacific deep sea sediment: effect of inorganic ammonium and organic nitrogen compound sorbed by clays. Geochim Cosmochim Acta 41:765–776

    Article  Google Scholar 

  • Murphy J, Riley J (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Noguerol Seoane A (1993) Algas dulceacuícolas de la Sierra de Invernadeiro (Orense, N.O.España). Nova Acta Científica Compostelana (Bioloxía) 4:5–13

    Google Scholar 

  • Ortega-Calvo JJ, Arino X, Hernandez-Marine M, Saiz-Jimenez C (1995) Factors affecting the weathering and colonization of monuments by phototrophic microorganisms. Sci Total Environ 167:329–341

    Article  CAS  Google Scholar 

  • Packard TT (1971) The measurement of respiratory electron transport activity in marine phytoplankton. J Mar Res 29:235–244

    Google Scholar 

  • Patil RD, Dalev PG, Mark JE, Vassileva E, Fakirov S (2000) Biodegradation of chemically modified gelatin films in lake and river waters. J Appl Polym Sci 76:29–37

    Article  CAS  Google Scholar 

  • Penalta-Rodríguez M, López-Rodríguez MC, Devesa-Rey R, Iglesias ML, Paradelo R, Diaz-Fierros F, Barral MT (2008) Composición algal del biofilm en sedimentos de fondo del Río Anllóns. XIV Congreso de la Asociación Ibérica de Limnología. Asociación Ibérica de Limnología, Spain

    Google Scholar 

  • Persaud D, Jaagumagui R, Hayton A (1993) Guidelines for the protection and management on aquatic sediment quality in Ontario. Ontario Ministry of the Environment and Energy. Ontario, Canada

    Google Scholar 

  • Pinckney JL, Paerl HW, Tester P, Richardson TL (2001) The role of nutrient loading and eutrophication in Estuarine ecology a definition of eutrophication. Environ Health Perspect 109(5):699–706

  • Ponsati L, Acuña V, Aristi I, Arroita M, García-Berthou E, von Schiller D, Elosegi A, Sabater (2015) Biofilm responses to flow regulation by dams in Mediterranean Rivers. River Res Applic 31(8):1003–1016

  • Prieto DM, Devesa-Rey R, Rubinos DA et al. (2013) Arsenate retention by epipsammic biofilms developed on streambed sediments. Influence of phosphate. BioMed Res Inter Volume 2013, Article ID 591634

  • Prieto DM, Rubinos DA, Devesa-Rey R et al. (2014) Influence of epipsammic biofilms on the retention and speciation of arsenic in freshwater environments. Science across bridges, borders and boundaries. Abstract Book of SETAC Europe 24th Annual Meeting Basel, Switzerland, 11–15 May 2014

  • Rodríguez Castro MC, Urrea G, Guasch H (2015) Influence of the interaction between phosphate and arsenate on periphyton’s growth and its nutrient uptake capacity. Sci Total Environ 503–504:122–132

    Article  Google Scholar 

  • Rubinos D, Barral MT, Ruíz B, Ruíz M, Rial ME, Alvarez, Díaz-Fierros F (2003) Phosphate and arsenate retention in sediments of the Anllóns river (northwest Spain). Water Sci Technol 48:159–166

    CAS  Google Scholar 

  • Rubinos D, Iglesias L, Devesa-Rey R, Díaz-Fierros F, Barral MT (2010) Arsenic release from river sediments in a gold-mining area (Anllóns River basin, Spain): effect of time, pH and phosphorous concentration. Eur J Mineral 22:665–678

    Article  CAS  Google Scholar 

  • Rubinos D, Iglesias L, Díaz-Fierros F, Barral MT (2011) Interacting effect of pH, phosphate and time on the release of arsenic from polluted river sediments (Anllóns River, Spain). Aquat Geochem 17:281–306

    Article  CAS  Google Scholar 

  • Sanmartín P, Devesa-Rey R, Prieto B, Barral MT (2011) Nondestructive assessment of phytopigments in riverbed sediments by the use of instrumental color measurements. J Soils Sediments 11:841–851

    Article  Google Scholar 

  • Schlüter L, Lauridsen TL, Krogh G, Jorgensen T (2006) Identification and quantification of phytoplankton groups in lakes using new pigment ratios – a comparison between pigment analysis by HPLC and microscopy. Freshwater Biol 51:1474–1485

    Article  Google Scholar 

  • Segura-García V, Israde-Alcántara I, Maidana NI (2010) The genus Navicula sensu stricto in the upper Lerma Basin, Mexico. I. Diatom Res 25:367–383

    Article  Google Scholar 

  • Serra A, Corcoll N, Guasch H (2009) Cu accumulation and toxicity in fluvial periphyton: the influence of exposure history. Chemosphere 74:633–641

    Article  CAS  Google Scholar 

  • Soldo D, Behra R (2000) Long-term effects of Cu on the structure of freshwater periphyton communities and their tolerance to Cu, Zn, nickel and silver. Aquat Toxicol 47:181–189

    Article  CAS  Google Scholar 

  • Stal LJ (2003) Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments. Geomicrobiol J 20:463–478

    Article  CAS  Google Scholar 

  • Sterling MS, Ashley KJ, Bautista AB (2000) Slow release fertilizer for rehabilitating oligotrophic streams: a physical characterization. Water Qual Res J Canada 35:73–94

    CAS  Google Scholar 

  • Sutherland TF, Amos CL, Grant J (1998) The erosion threshold of biotic sediments: a comparison of methods. Geol Soc Special Publ 139:295–307

    Article  Google Scholar 

  • Tabatabai MA (1982) Soil enzymes. In: Page AL (ed) Methods of soil analysis. part 2. chemical and microbiological properties. American Society of Agronomy, Madison, pp 903–948

    Google Scholar 

  • Tlili A, Bérard A, Roulier JL, Volat B, Montuelle B (2010) PO4 3− dependence of the tolerance of autotrophic and heterotrophic biofilm communities to copper and diuron. Aquat Toxicol 98:165–177

    Article  CAS  Google Scholar 

  • Tlili A, Maréchal M, Bérard A, Volat B, Montuelle B (2011) Enhanced co-tolerance and co-sensitivity from long-term metal exposures of heterotrophic and autotrophic components of fluvial biofilms. Sci Total Enviorn 409:4335–4343

    Article  CAS  Google Scholar 

  • Tolhurst TJ, Defew EC, De Brouwer JFC, Wolfstein K, Stal LJ, Paterson DM (2006) Small-scale temporal and spatial variability in the erosion threshold and properties of cohesive intertidal sediments. Cont Shelf Res 26:351–362

    Article  Google Scholar 

  • Tomaselli L, Lamenti G, Tiano P (2002) Chlorophyll fluorescence for evaluating biocide treatments against phototrophic biodeteriogens. Ann Microbiol 52:197–206

    CAS  Google Scholar 

  • Trevors JT, Mayfield CI, Inniss WE (1982) Measurement of electron transport system (ETS) activity in soil. Microb Ecol 8:163–168

    Article  CAS  Google Scholar 

  • USEPA (1986) Quality criteria for water. Technical report 440/5-86-001. Office of Water Regulations and Standards, Washington, DC

    Google Scholar 

  • USEPA, Office of Water Regulations and Standards (1996) Water quality criteria documents for the protection of aquatic life in ambient water: 1995 updates. United States Environmental Protection Agency, EPA 820-B-96-001, United States Environmental Protection Agency, Washington DC

    Google Scholar 

  • Vázquez-Nion D, Sanmartín P, Silva B, Prieto B (2013) Reliability of color measurements for monitoring pigment content in a biofilm forming cyanobacterium. Int Biodeterior Biodegrad 84:220–226

    Article  Google Scholar 

  • Wangberg S-A, Heyman U, Blanck H (1991) Long-term and short-term arsenate toxicity to fresh-water phytoplankton and periphyton in limnocorrals. Can J Fish Aquat Sci 48:173–182

    Article  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolutions. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • WFD UK TAG (2008) UK Environmental Standards and Conditions (Phase 1). UK Technical Advisory Group on the WFD. 73 pp, [http://www.wfduk.org/UK_Environmental_Standards/]

  • Wolf A, Baker D, Pionke H, Kunishi H (1985) Soil tests for estimating labile, soluble, and algae-available phosphorus in agricultural soils. J Environ Qual 14:341–404

    Article  Google Scholar 

  • Xiaoxia L, Jinming S, Huamao Y, Xuegang L, Tianrong Z, Ning L, Xuelu G, Xuefa S (2005) Grain-size related nitrogen distribution in southern Yellow Sea surface sediments. Chin J Oceanol Limnol 23:306–316

    Article  Google Scholar 

  • Ziervogel K, Forster S (2006) Do benthic diatoms influence erosion thresholds of coastal subtidal sediments? J Sea Res 55:43–53

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Spanish Ministry of Economy and Competitiveness for (MINECO-FEDER) for financial support (project ref. CGL2010-22059 and CGL2013-46003-P). Rosa Devesa-Rey gratefully acknowledges the financial support of the Ángeles Alvariño Programme of the Xunta de Galicia. Diego Martiñá Prieto wishes to acknowledge the financial support of the Spanish Ministry of Economy and Competitiveness for his FPI Fellowship (BES-2011-044514).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Martiñá Prieto.

Additional information

Responsible editor: Sabine Ulrike Gerbersdorf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prieto, D.M., Devesa-Rey, R., Paradelo, R. et al. Monitoring benthic microflora in river bed sediments: a case study in the Anllóns River (Spain). J Soils Sediments 16, 1825–1839 (2016). https://doi.org/10.1007/s11368-016-1395-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-016-1395-4

Keywords

Navigation