Skip to main content

Advertisement

Log in

Life cycle assessment of manufacturing cellulose nanofibril-reinforced chitosan composite films for packaging applications

  • LCA FOR AGRICULTURE PRACTICES AND BIOBASED INDUSTRIAL PRODUCTS
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Increased accumulation of fossil-based polymer packaging films on land and ocean surfaces poses major environmental challenges to our ecosystem. Developing alternative packaging films with no or minimal environmental burdens is critically important. Cellulose nanofibril (CNF)-reinforced chitosan biopolymer composites are the most promising bio-based alternatives for packaging applications due to their biodegradable, biocompatible, and antimicrobial properties. This study evaluates the life cycle environmental impacts of chitosan-CNF composite films to identify the environmental hotspots that can be eliminated during large-scale production.

Methods

A cradle-to-gate life cycle assessment is conducted to evaluate the environmental impacts of citric acid crosslinked chitosan-CNF composite films that can be used for packaging applications. The main manufacturing operations include (i) production of chitosan from shrimp shell waste, (ii) CNF production from forest biomass, and (iii) production of citric acid crosslinked composite films by the solvent-casting method. Life cycle inventory data are obtained from published literature and laboratory experiments. The environmental impacts are evaluated by US EPA’s TRACI 2.1 impact assessment method. The effects of key process parameters on the environmental impacts of composite films are also evaluated.

Results and discussion

The global warming potential (GWP) of manufacturing chitosan-CNF composite films is about 3.91 kg CO2 eq./kg of the film, which is marginally lower than that of the fossil-based low-density polyethylene (LDPE) and bio-based poly(lactic acid) (PLA) films. The film casting sub-process in the composite film production contributes up to 90% of the total CO2 emissions. The amount of sodium hydroxide used in the deproteination of shrimp shells is the most sensitive factor in all impact categories. The scenario analysis shows the increase in the CNF loading rate to improve the mechanical and barrier properties does not substantially increase the global warming potential (GWP) and other environmental impacts.

Conclusion

A cradle-to-gate life cycle assessment of the chitosan-CNF composite film has demonstrated that the overall environmental impacts are comparable or lower than that of fossil-based polymers and other biopolymers considered in the flexible packaging applications. The development of renewable energy-based film dryers and environmentally benign methods to extract chitosan from shrimp shell waste can further reduce the GWP of composite films. When the end of life of fossil-based polymers is considered, the biodegradable nature of chitosan-CNF composite can be an environmentally attractive film for packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The dataset used/or analyzed during the current study are available in the supplementary file (see Supplementary Information section).

Abbreviations

AD :

Acidification

CED:

Cumulative energy demand

CG:

Carcinogenic

CNF:

Cellulose nanofibrils

EPA:

Environmental protection agency

EP:

Eutrophication

ET:

Ecotoxicity

GHG:

Greenhouse gas

GWP :

Global warming potential

LCA:

Life cycle assessment

LCI:

Life cycle inventory

LDPE:

Low-density polyethylene

MSW:

Municipal solid waste

NE/NC :

Northeastern and north-central

OD :

Ozone depletion

PHA:

Polyhydroxyalkanoates

PHB:

Polyhydroxy butyrate

PLA:

Polylactic acid

PP:

Polypropylene

SF:

Smog formation

References

  • Abdul Khalil HPS et al (2018) Cellulose reinforced biodegradable polymer composite film for packaging applications. In: Jawaid M, Swain SK (eds) Bionanocomposites for packaging applications. Springer international publishing, Cham, pp 49–69. https://doi.org/10.1007/978-3-319-67319-6_3.

  • Arvidsson R, Nguyen D, Svanström M (2015) Life cycle assessment of cellulose nanofibrils production by mechanical treatment and two different pretreatment processes. Environ Sci Technol 49:6881–6890. https://doi.org/10.1021/acs.est.5b00888

    Article  CAS  Google Scholar 

  • Azeredo HMC, Mattoso LHC, Avena-Bustillos RJ, Filho GC, Munford ML, Wood D, McHugh TH (2010) Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J Food Sci 75:N1–N7. https://doi.org/10.1111/j.1750-3841.2009.01386.x

    Article  CAS  Google Scholar 

  • Bare J, Young D, QAM S, Hopton M, Chief SAB (2012) Tool for the reduction and assessment of chemical and other environmental impacts (TRACI). US Environmental Protection Agency (EPA), Washington DC, USA.

  • Bhattacharya SC, Ruangrungchaikul T, Pham HL (2000) Chapter 240 - Design and performance of a hybrid solar/biomass energy powered dryer for fruits and vegetables. In: Sayigh AAM (ed) World renewable energy congress VI. Pergamon, Oxford, pp 1161–1164. https://doi.org/10.1016/B978-008043865-8/50240-3.

  • Bilodeau MA, Paradis MA (2018) High-efficiency production of nanofibrillated cellulose. U.S. Patent No.9,988,762, June 5, 2018.

  • Boxman SE, Zhang Q, Bailey D, Trotz MA (2016) Life cycle assessment of a commercial-scale freshwater aquaponic system. Environ Eng Sci 34:299–311. https://doi.org/10.1089/ees.2015.0510

    Article  CAS  Google Scholar 

  • Bristow J (2012) Chitosan manufacturing process. U.S. Patent No. 8,318,913 B2, November 27, 2012.

  • Brusseau ML (2019) Chapter 32 - Sustainable development and other solutions to pollution and global change. In: Brusseau ML, Pepper IL, Gerba CP (eds) Environmental and pollution science (Third Edition). Academic press 585–603. https://doi.org/10.1016/B978-0-12-814719-1.00032-X.

  • Capadona JR, Van Den Berg O, Capadona LA, Schroeter M, Rowan SJ, Tyler DJ, Weder C (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat Nanotechnol 2:765–769

    Article  CAS  Google Scholar 

  • Carroad PA, Tom RA (1978) Bioconversion of shellfish chitin wastes: process conception and selection of microorganisms. J of Food Sci 43:1158–1161. https://doi.org/10.1111/j.1365-2621.1978.tb15259.x

    Article  CAS  Google Scholar 

  • Cazón P, Velazquez G, Ramírez JA, Vázquez M (2017) Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocoll 68:136–148. https://doi.org/10.1016/j.foodhyd.2016.09.009

    Article  CAS  Google Scholar 

  • Cha DS, Chinnan MS (2004) Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr 44:223–237. https://doi.org/10.1080/10408690490464276

    Article  CAS  Google Scholar 

  • Charoenvuttitham P, Shi J, Mittal GS (2006) Chitin extraction from black tiger shrimp (Penaeus monodon) waste using organic acids. Sep Sci Technol 41:1135–1153. https://doi.org/10.1080/01496390600633725

    Article  CAS  Google Scholar 

  • CheCalc (2015) Agitator power. https://checalc.com/solved/agitator.html

  • Chen X, Jiang Q, Xu Y, Xia W (2017) Recovery of chitin from antarctic krill (Euphausia superba) shell waste by microbial deproteinization and demineralization. J Aquat Food Prod Technol 26:1210–1220. https://doi.org/10.1080/10498850.2015.1094686

    Article  CAS  Google Scholar 

  • Choi B, Yoo S, Park S-i (2018) Carbon footprint of packaging films made from LDPE, PLA, and PLA/PBAT blends in South Korea. Sustainability 10:2369

    Article  CAS  Google Scholar 

  • Cooper DR, Gutowski TG (2020) Prospective environmental analyses of emerging technology: a critique, a proposed methodology, and a case study on incremental sheet forming. J Ind Ecol 24:38–51

    Article  Google Scholar 

  • Crippa M, Wilde BD, Koopmans R, Leyssens J, Linder M, Muncke J, Ritschkoff A-C, Van Doorsselaer K, Velis C, Wagner M (2019) A circular economy for plastics: Insights from research and innovation to inform policy and funding decisions. European Commission, Brussels, Belgium.

  • Curran MA (2016) Life-Cycle Assessment. In: Fath B (ed) Encyclopedia of ecology (second edition). Elsevier, Oxford 359–366. https://doi.org/10.1016/B978-0-12-409548-9.09700-1

  • Dean K, Sangwan P, Way C, Zhang X, Martino VP, Xie F, Halley PJ, Pollet E, Avérous L (2013) Glycerol plasticised chitosan: a study of biodegradation via carbon dioxide evolution and nuclear magnetic resonance. Polym Degrad Stab 98:1236–1246

    Article  CAS  Google Scholar 

  • Devi R, Dhamodharan R (2018) Pretreatment in hot glycerol for facile and green separation of chitin from prawn shell waste. ACS Sustain Chem Eng 6:846–853. https://doi.org/10.1021/acssuschemeng.7b03195

    Article  CAS  Google Scholar 

  • Dijkman TJ, Basset-Mens C, Antón A, Núñez M (2018) LCA of food and agriculture. Life cycle assessment: theory and practice. M. Z. Hauschild, R. K. Rosenbaum and S. I. Olsen. Cham, Springer international publishing. 723–754

  • EMF (2013) Towards the circular economy – Economic and business rationale for an accelerated transition – Vol. 1 Available at: https://emf.thirdlight.com/link/x8ay372a3r11-k6775n/@/preview/1?o (accessed on 08/12/2021)

  • EPA (2017) Sustainable Materials Management (SMM) - Materials and waste management in the United States key facts and figures. U.S. EPA office of land and emergency management (OLEM) - Office of resource conservation and recovery (ORCR)

  • EPA (2019) Documentation for greenhouse gas emission and energy factors used in the waste reduction model (WARM). Organic materials chapters

  • Fan Y, Zhou C, Zhu X (2009) Selective catalysis of lactic acid to produce commodity chemicals. Catal Rev 51:293–324. https://doi.org/10.1080/01614940903048513

    Article  CAS  Google Scholar 

  • Fernandes SCM, Freire CSR, Silvestre AJD, Pascoal Neto C, Gandini A, Berglund LA, Salmén L (2010) Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydr Polym 81:394–401. https://doi.org/10.1016/j.carbpol.2010.02.037

    Article  CAS  Google Scholar 

  • Fisheries N (2017) Fisheries economics of the United States, 2015 NOAA Technical memorandum NMFS-F/SPO-170 NOAA, National marine fisheries service, Office of science and technology, Silver Spring, MD

  • Ghamkhar R, Hartleb C, Wu F, Hicks A (2020) Life cycle assessment of a cold weather aquaponic food production system. J Clean Prod 244:118767

  • Ghorbel-Bellaaj O, Younes I, Maâlej H, Hajji S, Nasri M (2012) Chitin extraction from shrimp shell waste using Bacillus bacteria. Int J Biol Macromol 51:1196–1201. https://doi.org/10.1016/j.ijbiomac.2012.08.034

    Article  CAS  Google Scholar 

  • Guerrero P, Muxika A, Zarandona I, de la Caba K (2019) Crosslinking of chitosan films processed by compression molding. Carbohydr Polym 206:820–826. https://doi.org/10.1016/j.carbpol.2018.11.064

    Article  CAS  Google Scholar 

  • Hernández-Hernández E, Neira-Velázquez M, Ramos de Valle L, Ponce A, Weinkauf D (2010) Changing the surface characteristics of CNF, from hydrophobic to hydrophilic, via plasma polymerization with acrylic acid. J Nano Res 9:45–53. https://doi.org/10.4028/www.scientific.net/JNanoR.9.45

    Article  CAS  Google Scholar 

  • Hu X, Tian Z, Li X, Wang S, Pei H, Sun H, Zhang Z (2020) Green, simple and effective process for the comprehensive utilization of shrimp shell waste. ACS Omega 30(5):19227–19235. https://doi.org/10.1021/acsomega.0c02705

    Article  CAS  Google Scholar 

  • Indumathi M, Sarojini KS, Rajarajeswari G (2019) Antimicrobial and biodegradable chitosan/cellulose acetate phthalate/ZnO nano composite films with optimal oxygen permeability and hydrophobicity for extending the shelf life of black grape fruits. Int J Biol Macromol 132:1112–1120. https://doi.org/10.1016/j.ijbiomac.2019.03.171

    Article  CAS  Google Scholar 

  • Kanematsu Y, Kikuchi Y, Yano H (2021) Life cycle greenhouse gas emissions of acetylated cellulose nanofiber-reinforced polylactic acid based on scale-up from lab-scale experiments. ACS Sustain Chem Eng 9:10444–10452

    Article  CAS  Google Scholar 

  • Kymäläinen M, Forssén M, Hupa M (1999) The fate of nitrogen in the chemical recovery process in a kraft pulp mill. Part I. A General View J Pulp Pap Sci 25:410–417

    Google Scholar 

  • ISO 14044:2006 Environmental management - life cycle assessment - requirements and guidelines. International organization for standardization, Geneva, Switzerland

  • Jo GH, Park RD, Jung WJ (2010) Enzymatic production of chitin from crustacean shell waste. In: Kim S-K (ed) Chitin, chitosan, oligosaccharides and their derivatives. CRC press, Taylor & Francis, Boca Raton, Florida, pp 37–45

  • Kemp IC (2012) Fundamentals of energy analysis of dryers. In: E. Tsotsas AM, E. Tsotsas and A.S. Mujumdar (ed) Modern drying technology, vol 4. Wiley‐VCH Verlag GmbH & Co. 1–46

  • Kumar S, Madlener R (2016) CO2 emission reduction potential assessment using renewable energy in India. Energy 97:273–282

    Article  Google Scholar 

  • Lee H (2016) Preparation and characterization of cellulose nanofibrils using various pretreatment techniques. M.Sc. Thesis dissertation, University of Georgia, Athens, GA USA

  • Lee H, Mani S (2017) Mechanical pretreatment of cellulose pulp to produce cellulose nanofibrils using a dry grinding method. Ind Crops Prod 104:179–187. https://doi.org/10.1016/j.indcrop.2017.04.044

    Article  CAS  Google Scholar 

  • Li D, Henschen J, Ek M (2017) Esterification and hydrolysis of cellulose using oxalic acid dihydrate in a solvent-free reaction suitable for preparation of surface-functionalised cellulose nanocrystals with high yield. Green Chem 19:5564–5567

    Article  CAS  Google Scholar 

  • Li Q, McGinnis S, Sydnor C, Wong A, Renneckar S (2013) Nanocellulose life cycle assessment. ACS Sustain Chem Eng 1:919–928. https://doi.org/10.1021/sc4000225

    Article  CAS  Google Scholar 

  • Mahmoud NS, Ghaly AE, Arab F (2007) Unconventional approach for demineralization of deproteinized crustacean shells for chitin production. Am J Biochem Biotechnol 3:1–9

    Article  CAS  Google Scholar 

  • Moberg T et al (2017) Rheological properties of nanocellulose suspensions: effects of fibril/particle dimensions and surface characteristics. Cellulose 24:2499–2510

    Article  CAS  Google Scholar 

  • Moni SM, Mahmud R, High K, Carbajales-Dale M (2020) Life cycle assessment of emerging technologies: A review. J Ind Ecol 24:52–63

    Article  CAS  Google Scholar 

  • Mujtaba M, Morsi RE, Kerch G, Elsabee MZ, Kaya M, Labidi J, Khawar KM (2019) Current advancements in chitosan-based film production for food technology: a review. Int J Biol Macromol 121:889–904. https://doi.org/10.1016/j.ijbiomac.2018.10.109

    Article  CAS  Google Scholar 

  • Muñoz I, Rodríguez C, Gillet D, Moerschbacher BM (2018) Life cycle assessment of chitosan production in India and Europe. Int J LCA 23:1151–1160. https://doi.org/10.1007/s11367-017-1290-2

    Article  CAS  Google Scholar 

  • Ndukwu MC, Simo-Tagne M, Abam FI, Onwuka OS, Prince S, Bennamoun L (2020) Exergetic sustainability and economic analysis of hybrid solar-biomass dryer integrated with copper tubing as heat exchanger. Heliyon 6:e03401. https://doi.org/10.1016/j.heliyon.2020.e03401

    Article  CAS  Google Scholar 

  • Ng H-M, Sin LT, Bee S-T, Tee T-T, Rahmat AR (2017) Review of nanocellulose polymer composite characteristics and challenges. Polym Plast Technol Eng 56:687–731. https://doi.org/10.1080/03602559.2016.1233277

    Article  CAS  Google Scholar 

  • Nunthanid J, Puttipipatkhachorn S, Yamamoto K, Peck GE (2001) Physical properties and molecular behavior of chitosan films. Drug Dev Ind Pharm 27:143–157. https://doi.org/10.1081/DDC-100000481

    Article  CAS  Google Scholar 

  • Oneil EE, Johnson LR, Lippke BR, McCarter JB, McDill ME, Roth PA, Finley JC (2010) Life-cycle impacts of inland northwest and northeast/north central forest resources. Wood Fiber Sci 42:29–51

    CAS  Google Scholar 

  • Phanthong P, Reubroycharoen P, Hao X, Xu G, Abudula A, Guan G (2018) Nanocellulose: extraction and application. Carbon Resour Convers 1:32–43. https://doi.org/10.1016/j.crcon.2018.05.004

    Article  Google Scholar 

  • Ponnusamy PG, Sundaram J, Mani S (2021) Preparation and characterization of citric acid crosslinked chitosan-cellulose nanofibrils composite films for packaging applications. J Appl Polym Sci e52017. https://doi.org/10.1002/app.52017

  • Rhim J-W, Hong S-I, Park H-M, Ng PK (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822

    Article  CAS  Google Scholar 

  • Rhim J-W, Ng PKW (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47:411–433. https://doi.org/10.1080/10408390600846366

    Article  CAS  Google Scholar 

  • Saha NC, Madhu G, Kadu DB (2019) Evaluation of biodegradability characteristics of cellulose-based film as per IS/ISO 14855–1. J Appl Packag Res 11:2

    Google Scholar 

  • Schiffman JD, Schauer CL (2008) A review: electrospinning of biopolymer nanofibers and their applications. Polym Rev 48:317–352

    Article  CAS  Google Scholar 

  • Sharma A, Thakur M, Bhattacharya M, Mandal T, Goswami S (2019) Commercial application of cellulose nano-composites – a review. Biotechnol Rep 21:e00316. https://doi.org/10.1016/j.btre.2019.e00316

    Article  Google Scholar 

  • Siemann U (2005) Solvent cast technology – a versatile tool for thin film production. In: Stribeck N, Smarsly B (eds) Scattering methods and the properties of polymer materials. Springer Berlin Heidelberg, Berlin, Heidelberg, 1–14. https://doi.org/10.1007/b107336

  • Spalding MA, Chatterjee A (2017) Handbook of industrial polyethylene and technology: definitive guide to manufacturing, properties, processing, applications and markets set. John Wiley & Sons

    Book  Google Scholar 

  • Srinivasa P, Ramesh M, Kumar K, Tharanathan R (2004) Properties of chitosan films prepared under different drying conditions. J Food Eng 63:79–85

    Article  Google Scholar 

  • Srinivasa P, Ramesh M, Tharanathan R (2007) Effect of plasticizers and fatty acids on mechanical and permeability characteristics of chitosan films. Food Hydrocoll 21:1113–1122

    Article  CAS  Google Scholar 

  • Srinivasa PC, Tharanathan RN (2007) Chitin/chitosan — safe, ecofriendly packaging materials with multiple potential uses. Food Rev Int 23:53–72. https://doi.org/10.1080/87559120600998163

    Article  CAS  Google Scholar 

  • SUNPAP (2013) Scale-up nanoparticles in modern papermaking. Final report summary. European Commission’s 7th frame work programme under grant agreement No 228802, FP7-NMP. Final report available at: https://cordis.europa.eu/project/id/228802/reporting (accessed on July 20, 2021).

  • Tabone MD, Cregg JJ, Beckman EJ, Landis AE (2010) Sustainability metrics: life cycle assessment and green design in polymers. Environ Sci Technol 44:8264–8269

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  • Udoetok IA, Wilson LD, Headley JV (2016) Self-assembled and cross-linked animal and plant-based polysaccharides: chitosan–cellulose composites and their anion uptake properties. ACS Appl Mater Interfaces 8:33197–33209

    Article  CAS  Google Scholar 

  • Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromol 12:1387–1408

    Article  Google Scholar 

  • Vaz Á, Espírito-Santo A, Araújo P, Simões R, Silvy J (2019) Energy efficiency in low consistency refining: a study using a valley beater. Nord Pulp Paper Res J 34:67–74. https://doi.org/10.1515/npprj-2018-0009

    Article  CAS  Google Scholar 

  • Wang H, Qian J, Ding F (2018) Emerging chitosan-based films for food packaging applications. J Agric Food Chem 66:395–413. https://doi.org/10.1021/acs.jafc.7b04528

    Article  CAS  Google Scholar 

  • Vidal R, Martínez P, Garraín D (2009) Life cycle assessment of composite materials made of recycled thermoplastics combined with rice husks and cotton linters. Int J Life Cycle Assess 14:73–82

    Article  CAS  Google Scholar 

  • Wernet G, Bauer C, Steubing B, Reinhard J, Moreno-Ruiz E, Weidema B (2016) The ecoinvent database version 3 (part I): overview and methodology Int J Life Cycle Assess 21:1218–1230.

  • Yahya M, Fahmi H, Fudholi A, Sopian K (2018) Performance and economic analyses on solar-assisted heat pump fluidised bed dryer integrated with biomass furnace for rice drying. Sol Energy 174:1058–1067. https://doi.org/10.1016/j.solener.2018.10.002

    Article  Google Scholar 

  • Yang H, Gözaydın G, Nasaruddin RR et al (2019) Toward the shell biorefinery: processing crustacean shell waste using hot water and carbonic acid. ACS Sustain Chem Eng 7:5532–5542. https://doi.org/10.1021/acssuschemeng.8b06853

  • Yates MR, Barlow CY (2013) Life cycle assessments of biodegradable, commercial biopolymers – a critical review Resour Conserv Recycl 78: 54–66. https://doi.org/10.1016/j.resconrec.2013.06.010.

  • Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. Chem Bio Eng Reviews 2:204–226. https://doi.org/10.1002/cben.201400025

    Article  Google Scholar 

  • Zinn M, Weilenmann H-U, Hany R, Schmid M, Egli T (2003) Tailored synthesis of poly([R]-3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/HV) in Ralstonia eutropha DSM 428. Acta Biotechnol 23:309–316. https://doi.org/10.1002/abio.200390039

    Article  CAS  Google Scholar 

Download references

Funding

This study is financially supported by the National Science Foundation’s (NSF) Center for Bioplastics and Biocomposites (CB2) – A Industry-University Cooperative Research Centers (IUCRC) program, the University of Georgia (UGA). National Science Foundations-Center for Bioplastics and Biocomposites,IUCRC,University of Georgia

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Sudhagar Mani, Prabaharan Ponnusamy. Methodology: Prabaharan Ponnusamy, Sudhagar Mani. Formal analysis and investigation: Prabaharan Ponnusamy, Sudhagar Mani. Writing — original draft preparation: Prabaharan Ponnusamy, Sudhagar Mani. Writing — review and editing: Sudhagar Mani. Funding acquisition: Sudhagar Mani. Resources: Sudhagar Mani. Supervision: Sudhagar Mani.

Corresponding author

Correspondence to Sudhagar Mani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Ivan Muñoz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 66 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponnusamy, P.G., Mani, S. Life cycle assessment of manufacturing cellulose nanofibril-reinforced chitosan composite films for packaging applications. Int J Life Cycle Assess 27, 380–394 (2022). https://doi.org/10.1007/s11367-022-02035-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-022-02035-y

Keywords

Navigation