Skip to main content
Log in

A critical review on the fabrication of chitosan films from marine wastes

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

With a growing population of about 7.8 billion, humans are generating tons of waste in the form of non-biodegradable plastics on a daily basis that ends up in landfills and oceans. The introduction of packaging has been a blessing to mankind by facilitating the ease of convenience in transportation, delivery and general usage. The downside, however, is that majority of the packaging currently available is harmful to the environment and takes thousands of years to decay. This paper discusses the use of chitosan from shrimp shells and other marine animals’ exoskeleton waste in food packaging industries. Chitosan extracted from marine organisms is modulated in the form of packaging material. Compared to conventional packaging, chitosan films are 73.4% biodegradable in soil under laboratory conditions whereas 100% degraded in an open field. Chitosan with metal oxides, essential oils, natural extracts, proteins and other polymers show enhanced tensile strength, water vapor permeability, oxygen and ultraviolet barrier. Chitosan and composite film show antimicrobial activity against gram positive and negative bacteria. Comparative approaches on environmental impacts between conventional plastics and chitosan films are enlightened, thereby highlighting the importance of natural polymers as packaging films that are considered economic based on the addition of additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be available by made on request.

References

  1. Abdou ES, Nagy KSA, Elsabee MZ (2008) Extraction and characterization of chitin and chitosan from local sources. Biores Technol 99(5):1359–1367. https://doi.org/10.1016/j.biortech.2007.01.051

    Article  CAS  Google Scholar 

  2. Ahmad Qamar S, Asgher M, Bilal M, Iqbal HMN (2020) Bio-based active food packaging materials: sustainable alternative to conventional petrochemical-based packaging materials. Food Res Int 137:109625. https://doi.org/10.1016/j.foodres.2020.109625

    Article  CAS  Google Scholar 

  3. Alishahi A, Aïder M (2011) Applications of chitosan in the seafood industry and aquaculture: a review. Food Bioprocess Technol 5(3):817–830. https://doi.org/10.1007/s11947-011-0664-x

    Article  CAS  Google Scholar 

  4. Al-Naamani L, Dobretsov S, Dutta J (2016) Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innov Food Sci Emerg Technol 38:231–237. https://doi.org/10.1016/j.ifset.2016.10.010

    Article  CAS  Google Scholar 

  5. Amalraj A, Haponiuk JT, Thomas S, Gopi S (2020) Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil. Int J Biol Macromol 151:366–375. https://doi.org/10.1016/j.ijbiomac.2020.02.176

    Article  CAS  PubMed  Google Scholar 

  6. Ali A, Ahmed S (2021) Eco-friendly natural extract loaded antioxidative chitosan/polyvinyl alcohol based active films for food packaging. Heliyon 7(3):e06550. https://doi.org/10.1016/j.heliyon.2021.e06550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Antoniou J, Liu F, Majeed H, Zhong F (2014) Characterization of tara gum edible films incorporated with bulk chitosan and chitosan nanoparticles: a comparative study. Food Hydrocoll 44:309–319. https://doi.org/10.1016/j.foodhyd.2014.09.023

    Article  CAS  Google Scholar 

  8. Arroyo BJ, Bezerra AC, Oliveira LL, Arroyo SJ, de Melo EA, Santos AMP (2019) Antimicrobial active edible coating of alginate and chitosan add ZnO nanoparticles applied in guavas (Psidium guajava L.). Food Chem 309:125566. https://doi.org/10.1016/j.foodchem.2019.125566

    Article  CAS  PubMed  Google Scholar 

  9. Bajić M, Ročnik T, Oberlintner A, Scognamiglio F, Novak U, Likozar B (2019) Natural plant extracts as active components in chitosan-based films: a comparative study. Food Packag Shelf Life 21:100365. https://doi.org/10.1016/j.fpsl.2019.100365

    Article  Google Scholar 

  10. Ban Z, Wei W, Yang X, Feng J, Guan J, Li L (2015) Combination of heat treatment and chitosan coating to improve postharvest quality of wolfberry (Lycium barbarum). Int J Food Sci Technol 50(4):1019–1025. https://doi.org/10.1111/ijfs.12734

    Article  CAS  Google Scholar 

  11. Behera K, Kumari M, Chang Y-H, Chiu F-C (2021) Chitosan/boron nitride nanobiocomposite films with improved properties for active food packaging applications. Int J Biol Macromol 186:135–144. https://doi.org/10.1016/j.ijbiomac.2021.07.022

    Article  CAS  PubMed  Google Scholar 

  12. Benbettaieb N, Kurek M, Bornaz S, Debeaufort F (2014) Barrier, structural and mechanical properties of bovine gelatin-chitosan blend films related to biopolymer interactions. J Sci Food Agric 94(12):2409–2419. https://doi.org/10.1002/jsfa.6570

    Article  CAS  PubMed  Google Scholar 

  13. Bi F, Zhang X, Bai R, Liu Y, Liu J, Liu J (2019) Preparation and characterization of antioxidant and antimicrobial packaging films based on chitosan and proanthocyanidins. Int J Biol Macromol 134:11–19

    Article  CAS  PubMed  Google Scholar 

  14. Bie P, Liu P, Yu L, Li X, Chen L, Xie F (2013) The properties of antimicrobial films derived from poly(lactic acid)/starch/chitosan blended matrix. Carbohydr Polym 98(1):959–966. https://doi.org/10.1016/j.carbpol.2013.07.004

    Article  CAS  PubMed  Google Scholar 

  15. Bourakadi KE, Merghoub N, Fardioui M, Mekhzoum MEM, Kadmiri IM, Essassi EM, Qaiss AK, Bouhfid R (2019) Chitosan/polyvinyl alcohol/thiabendazoluim-montmorillonite bio-nanocomposite films: mechanical, morphological and antimicrobial properties. Compos B Eng 172:103–110. https://doi.org/10.1016/j.compositesb.2019.05.042

    Article  CAS  Google Scholar 

  16. Cao W, Yan J, Liu C, Zhang J, Wang H, Gao X, Liu C, Fan Y-Y, Zhang J, Niu B, Li W (2020) Preparation and characterization of catechol-grafted chitosan/gelatin/modified chitosan-AgNP blend films. Carbohydr Polym 247:116643. https://doi.org/10.1016/j.carbpol.2020.116643

    Article  CAS  PubMed  Google Scholar 

  17. Cárdenas G, Díaz VJ, Meléndrez MF, Cruzat CC, García Cancino A (2009) Colloidal Cu nanoparticles/chitosan composite film obtained by microwave heating for food package applications. Polym Bull 62(4):511–524. https://doi.org/10.1007/s00289-008-0031-x

    Article  CAS  Google Scholar 

  18. Cazón P, Vázquez M (2019) Applications of chitosan as food packaging materials. In: Crini G, Lichtfouse E (eds) Sustainable agriculture reviews, vol 36. Springer, Cham

    Google Scholar 

  19. Cazón P, Vázquez M (2019) Mechanical and barrier properties of chitosan combined with other components as food packaging film. Environ Chem Lett 18:257–267. https://doi.org/10.1007/s10311-019-00936-3

    Article  CAS  Google Scholar 

  20. Chatelet C, Damour O, Domard A (2001) Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials 22(3):261–268

    Article  CAS  PubMed  Google Scholar 

  21. Costa SM, Ferreira DP, Teixeira P, Ballesteros LF, Teixeira JA, Fangueiro R (2021) Active natural-based films for food packaging applications: the combined effect of chitosan and nanocellulose. Int J Biol Macromol 177:241–251. https://doi.org/10.1016/j.ijbiomac.2021.02.105

    Article  CAS  PubMed  Google Scholar 

  22. Deng L, Taxipalati M, Zhang A, Que F, Wei H, Feng F, Zhang H (2018) Electrospun chitosan/poly(ethylene oxide)/lauric arginate nanofibrous film with enhanced antimicrobial activity. J Agric Food Chem 66(24):6219–6226. https://doi.org/10.1021/acs.jafc.8b01493

    Article  CAS  PubMed  Google Scholar 

  23. Díez-Pascual AM, Díez-Vicente AL (2015) Antimicrobial and sustainable food packaging based on poly(butylene adipate-co-terephthalate) and electrospun chitosan nanofibers. RSC Adv 5(113):93095–93107. https://doi.org/10.1039/C5RA14359D

    Article  Google Scholar 

  24. Dotto GL, Vieira MLG, Pinto LAA (2015) Use of chitosan solutions for the microbiological shelf life extension of papaya fruits during storage at room temperature. LWT Food Sci Technol 64(1):126–130. https://doi.org/10.1016/j.lwt.2015.05.042

    Article  CAS  Google Scholar 

  25. Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114(4):1173–1182. https://doi.org/10.1016/j.foodchem.2008.11.047

    Article  CAS  Google Scholar 

  26. Florez M, Guerra-Rodriguez E, Cazon P, Vazquez M (2022) Chitosan for food packaging: recent advances in active and intelligent films. Food Hydrocoll 124:107328

    Article  CAS  Google Scholar 

  27. Giannakas A, Patsaoura A, Barkoula N-M, Ladavos A (2017) A novel solution blending method for using olive oil and corn oil as plasticizers in chitosan based organoclay nanocomposites. Carbohydr Polym 157:550–557. https://doi.org/10.1016/j.carbpol.2016.10.020

    Article  CAS  PubMed  Google Scholar 

  28. Giannakas A, Vlacha M, Salmas C, Leontiou A, Katapodis P, Stamatis H, Barkoula NM, Ladavos A (2016) Preparation, characterization, mechanical, barrier and antimicrobial properties of chitosan/PVOH/clay nanocomposites. Carbohydr Polym 140:408–415. https://doi.org/10.1016/j.carbpol.2015.12.072

    Article  CAS  PubMed  Google Scholar 

  29. Grande-Tovar CD, Serio A, Delgado-Ospina J, Paparella A, Rossi C, Chaves-López C (2018) Chitosan films incorporated with Thymus capitatus essential oil: mechanical properties and antimicrobial activity against degradative bacterial species isolated from tuna (Thunnus sp.) and swordfish (Xiphias gladius). J Food Sci Technol 55:4256–4265. https://doi.org/10.1007/s13197-018-3364-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gzyra-Jagieła K, Pęczek B, Wiśniewska-Wrona M, Gutowska N (2019) Physicochemical properties of chitosan and its degradation products. Chitin and chitosan: properties and applications. Wiley Online Library, pp 61–80

    Chapter  Google Scholar 

  31. Ak HPS, Saurabh CK, Adnan AS, Fazita MN, Syakir MI, Davoudpour Y, Rafatullah M, Abdullah CK, Haafiz MK, Dungani R (2016) A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: properties and their applications. Carbohydr Polym 150:216–226. https://doi.org/10.1016/j.carbpol.2016.05.028

    Article  CAS  Google Scholar 

  32. Hafsa J, Ali Smach M, Khedher MR, Charfeddine B, Limem K, Majdoub H, Rouatbi S (2016) Physical, antioxidant and antimicrobial properties of chitosan films containing Eucalyptus globulus essential oil. LWT Food Sci Technol 68:356–364. https://doi.org/10.1016/j.lwt.2015.12.050

    Article  CAS  Google Scholar 

  33. Haghighi H, Licciardello F, Fava P, Siesler HW, Pulvirenti A (2020) Recent advances on chitosan-based films for sustainable food packaging applications. Food Packag Shelf Life 26:100551. https://doi.org/10.1016/j.fpsl.2020.100551

    Article  Google Scholar 

  34. Hemalatha T, Uma Maheswari T, Senthil R, Krithiga G, Anbukkarasi K (2017) Efficacy of chitosan films with basil essential oil: perspectives in food packaging. J Food Meas Charact 11(4):2160–2170. https://doi.org/10.1007/s11694-017-9601-7

    Article  Google Scholar 

  35. Hosseini SF, Rezaei M, Zandi M, Ghavi FF (2013) Preparation and functional properties of fish gelatin–chitosan blend edible films. Food Chem 136(3–4):1490–1495. https://doi.org/10.1016/j.foodchem.2012.09.081

    Article  CAS  Google Scholar 

  36. Hu B, Chen L, Lan S, Ren P, Wu S, Liu X, Shi X, Li H, Du Y, Ding F (2018) Layer-by-layer assembly of polysaccharide films with self-healing and antifogging properties for food packaging applications. ACS Appl Nano Mater 1(7):3733–3740. https://doi.org/10.1021/acsanm.8b01009

    Article  CAS  Google Scholar 

  37. Hu D, Wang H, Wang L (2016) Physical properties and antibacterial activity of quaternized chitosan/carboxymethyl cellulose blend films. LWT Food Sci Technol 65:398–405. https://doi.org/10.1016/j.lwt.2015.08.033

    Article  CAS  Google Scholar 

  38. Ibrahim HM, El-Zairy EMR (2015) Chitosan as a biomaterial—structure, properties, and electrospun nanofibers. In: Concepts, compounds and the alternatives of antibacterials. https://doi.org/10.5772/61300

  39. Jahan F, Mathad RD, Farheen S (2016) Effect of mechanical strength on chitosan-pva blend through ionic crosslinking for food packaging application. Mater Today Proc 3(10):3689–3696. https://doi.org/10.1016/j.matpr.2016.11.014

    Article  Google Scholar 

  40. Jakubowska E, Gierszewska M, Nowaczyk J, Olewnik-Kruszkowska E (2020) Physicochemical and storage properties of chitosan-based films plasticized with deep eutectic solvent. Food Hydrocoll 108:106007. https://doi.org/10.1016/j.foodhyd.2020.106007

    Article  CAS  Google Scholar 

  41. Jasour MS, Ehsani A, Mehryar L, Naghibi SS (2014) Chitosan coating incorporated with the lactoperoxidase system: an active edible coating for fish preservation. J Sci Food Agric 95(6):1373–1378. https://doi.org/10.1002/jsfa.6838

    Article  CAS  PubMed  Google Scholar 

  42. Jha P (2020) Effect of plasticizer and antimicrobial agents on functional properties of bionanocomposite films based on corn starch-chitosan for food packaging applications. Int J Biol Macromol 160:571–582. https://doi.org/10.1016/j.ijbiomac.2020.05.242

    Article  CAS  PubMed  Google Scholar 

  43. Ju S, Zhang F, Duan J, Jiang J (2020) Characterization of bacterial cellulose composite films incorporated with bulk chitosan and chitosan nanoparticles: a comparative study. Carbohydr Polym 237:116167. https://doi.org/10.1016/j.carbpol.2020.116167

    Article  CAS  PubMed  Google Scholar 

  44. Kadam AA, Singh S, Gaikwad KK (2021) Chitosan based antioxidant films incorporated with pine needles (Cedrus deodara) extract for active food packaging applications. Food Control 124:107877. https://doi.org/10.1016/j.foodcont.2021.107877

    Article  CAS  Google Scholar 

  45. Kanatt SR, Rao MS, Chawla SP, Sharma A (2012) Active chitosan–polyvinyl alcohol films with natural extracts. Food Hydrocoll 29(2):290–297. https://doi.org/10.1016/j.foodhyd.2012.03.005

    Article  CAS  Google Scholar 

  46. Kızılkonca E, Torlak E, Erim FB (2021) Preparation and characterization of antibacterial nano cerium oxide/chitosan/hydroxyethylcellulose/polyethylene glycol composite films. Int J Biol Macromol 177:351–359. https://doi.org/10.1016/j.ijbiomac.2021.02.139

    Article  CAS  PubMed  Google Scholar 

  47. Kulawik P, Jamróz E, Özogul F (2019) Chitosan role for shelf-life extension of seafood. Environ Chem Lett 18:61–74. https://doi.org/10.1007/s10311-019-00935-4

    Article  CAS  Google Scholar 

  48. Kumar S, Mukherjee A, Dutta J (2020) Chitosan based nanocomposite films and coatings: emerging antimicrobial food packaging alternatives. Trends Food Sci Technol 97:196–209. https://doi.org/10.1016/j.tifs.2020.01.002

    Article  CAS  Google Scholar 

  49. Kumar S, Shukla A, Baul PP, Mitra A, Halder D (2018) Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packag Shelf Life 16:178–184. https://doi.org/10.1016/j.fpsl.2018.03.008

    Article  Google Scholar 

  50. Kumari P, Barman K, Patel VB, Siddiqui MW, Kole B (2015) Reducing postharvest pericarp browning and preserving health promoting compounds of litchi fruit by combination treatment of salicylic acid and chitosan. Sci Hortic 197:555–563. https://doi.org/10.1016/j.scienta.2015.10.017

    Article  CAS  Google Scholar 

  51. Latou E, Mexis SF, Badeka AV, Kontakos S, Kontominas MG (2014) Combined effect of chitosan and modified atmosphere packaging for shelf life extension of chicken breast fillets. LWT Food Sci Technol 55(1):263–268. https://doi.org/10.1016/j.lwt.2013.09.010

    Article  CAS  Google Scholar 

  52. Lavorgna M, Piscitelli F, Mangiacapra P, Buonocore GG (2010) Study of the combined effect of both clay and glycerol plasticizer on the properties of chitosan films. Carbohydr Polym 82(2):291–298. https://doi.org/10.1016/j.carbpol.2010.04.054

    Article  CAS  Google Scholar 

  53. Leceta I, Guerrero P, Cabezudo S, de la Caba K (2013) Environmental assessment of chitosan-based films. J Clean Prod 41:312–318. https://doi.org/10.1016/j.jclepro.2012.09.049

    Article  CAS  Google Scholar 

  54. Li D, Dai F, Li H, Wang C, Shi X, Cheng Y, Deng H (2020) Chitosan and collagen layer-by-layer assembly modified oriented nanofibers and their biological properties. Carbohydr Polym 254:117438. https://doi.org/10.1016/j.carbpol.2020.117438

    Article  CAS  PubMed  Google Scholar 

  55. Li K, Zhu J, Guan G, Wu H (2018) Preparation of chitosan-sodium alginate films through layer-by-layer assembly and ferulic acid crosslinking: film properties, characterization, and formation mechanism. Int J Biol Macromol 122:485–492. https://doi.org/10.1016/j.ijbiomac.2018.10.188

    Article  CAS  PubMed  Google Scholar 

  56. Liu J, Huang J, Hu Z, Li G, Hu L, Chen X, Hu Y (2021) Chitosan-based films with antioxidant of bamboo leaves and ZnO nanoparticles for application in active food packaging. Int J Biol Macromol 189:363–369. https://doi.org/10.1016/j.ijbiomac.2021.08.136

    Article  CAS  PubMed  Google Scholar 

  57. Lizardi-Mendoza J, Argüelles Monal WM, Goycoolea Valencia FM (2016) Chemical characteristics and functional properties of chitosan. Chitosan in the preservation of agricultural commodities. Academic Press, pp 3–31

    Chapter  Google Scholar 

  58. Lou M-M, Zhu B, Muhammad I, Li B, Xie G-L, Wang Y-L, Li H-Y, Sun G-C (2011) Antibacterial activity and mechanism of action of chitosan solutions against apricot fruit rot pathogen Burkholderia seminalis. Carbohydr Res 346(11):1294–1301. https://doi.org/10.1016/j.carres.2011.04.042

    Article  CAS  PubMed  Google Scholar 

  59. Makarios-Laham I, Lee T-C (1995) Biodegradability of chitin- and chitosan-containing films in soil environment. J Environ Polym Degrad 3(1):31–36. https://doi.org/10.1007/BF02067791

    Article  CAS  Google Scholar 

  60. Marei NH, El-Samie EA, Salah T, Saad GR, Elwahy AHM (2016) Isolation and characterization of chitosan from different local insects in Egypt. Int J Biol Macromol 82:871–877. https://doi.org/10.1016/j.ijbiomac.2015.10.024

    Article  CAS  PubMed  Google Scholar 

  61. Martins da Costa JC, Lima Miki KS, da Silva Ramos A, Teixeira-Costa BE (2020) Development of biodegradable films based on purple yam starch/chitosan for food application. Heliyon 6(4):e03718. https://doi.org/10.1016/j.heliyon.2020.e03718

    Article  PubMed  PubMed Central  Google Scholar 

  62. Morin-Crini N, Lichtfouse E, Torri G, Crini G (2019) Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ Chem Lett 17:1667–1692. https://doi.org/10.1007/s10311-019-00904-x

    Article  CAS  Google Scholar 

  63. Mostafavi FS, Zaeim D (2020) Agar-based edible films for food packaging applications—A review. Int J Biol Macromol 159:1165–1176. https://doi.org/10.1016/j.ijbiomac.2020.05.123

    Article  CAS  PubMed  Google Scholar 

  64. Nair MS, Tomar M, Punia S, Kukula-Koch W, Kumar M (2020) Enhancing the functionality of chitosan- and alginate-based active edible coatings/films for the preservation of fruits and vegetables: a review. Int J Biol Macromol 164:304–320. https://doi.org/10.1016/j.ijbiomac.2020.07.083

    Article  CAS  PubMed  Google Scholar 

  65. Nilsen-Nygaard J, Fernández EN, Radusin T, Rotabakk BT, Sarfraz J, Sharmin N, Sivertsvik M, Sone I, Pettersen MK (2021) Current status of biobased and biodegradable food packaging materials: impact on food quality and effect of innovative processing technologies. Compr Rev Food Sci Food Saf 20(2):1333–1380. https://doi.org/10.1111/1541-4337.12715

    Article  PubMed  Google Scholar 

  66. Nouri A, Yaraki MT, Ghorbanpour M, Agarwal S, Gupta VK (2018) Enhanced Antibacterial effect of chitosan film using Montmorillonite/CuO nanocomposite. Int J Biol Macromol 109:1219–1231. https://doi.org/10.1016/j.ijbiomac.2017.11.119

    Article  CAS  PubMed  Google Scholar 

  67. Nwabor OF, Sudarshan S, Paosen S, Vongkamjan K, Voravuthikunchai SP (2020) Enhancing food shelf life with polyvinyl alcohol-chitosan polymer nanocomposite films from bioactive Eucalyptus leaf extracts. Food Biosci. https://doi.org/10.1016/j.fbio.2020.100609

    Article  Google Scholar 

  68. Pavinatto A, de Almeida Mattos AV, Malpass ACG, Okura MH, Balogh DT, Sanfelice RC (2019) Coating with chitosan-based edible films for mechanical/biological protection of strawberries. Int J Biol Macromol 151:1004–1011. https://doi.org/10.1016/j.ijbiomac.2019.11.076

    Article  CAS  PubMed  Google Scholar 

  69. Peniche C, Monal WA, Goycoolea FM (2008) Chapter 25—Chitin and chitosan: major sources, properties and applications. Monomers, polymers and composites from renewable resources. Elsevier, pp 517–542

    Chapter  Google Scholar 

  70. Pereira VA, de Arruda INQ, Stefani R (2015) Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as Time-Temperature Indicators for application in intelligent food packaging. Food Hydrocoll 43:180–188. https://doi.org/10.1016/j.foodhyd.2014.05.014

    Article  CAS  Google Scholar 

  71. Perumal AB, Sellamuthu PS, Nambiar RB, Sadiku ER (2018) Development of polyvinyl alcohol/chitosan bio-nanocomposite films reinforced with cellulose nanocrystals isolated from rice straw. Appl Surf Sci 449:591–602. https://doi.org/10.1016/j.apsusc.2018.01.022

    Article  CAS  Google Scholar 

  72. Pinzon MI, Sanchez LT, Garcia OR, Gutierrez R, Luna JC, Villa CC (2019) Increasing shelf life of strawberries (Fragaria ssp) by using a banana starch-chitosan-Aloe vera gel composite edible coating. Int J Food Sci Technol. https://doi.org/10.1111/ijfs.14254

    Article  Google Scholar 

  73. Pranoto Y, Rakshit SK, Salokhe VM (2005) Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT Food Sci Technol 38(8):859–865. https://doi.org/10.1016/j.lwt.2004.09.014

    Article  CAS  Google Scholar 

  74. Priyadarshi R, Rhim J-W (2020) Chitosan-based biodegradable functional films for food packaging applications. Innov Food Sci Emerg Technol 62:102346. https://doi.org/10.1016/j.ifset.2020.102346

    Article  CAS  Google Scholar 

  75. Priyadarshi R, Kumar B, Deeba F, Kulshreshtha A, Negi YS (2018) Chitosan films incorporated with Apricot (Prunus armeniaca) kernel essential oil as active food packaging material. Food Hydrocoll 85:158–166. https://doi.org/10.1016/j.foodhyd.2018.07.003

    Article  CAS  Google Scholar 

  76. Qin Y, Liu Y, Yuan L, Yong H, Liu J (2019) Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocoll 96:102–111. https://doi.org/10.1016/j.foodhyd.2019.05.017

    Article  CAS  Google Scholar 

  77. Qin Y-Y, Zhang Z-H, Li L, Yuan M-L, Fan J, Zhao T-R (2013) Physio-mechanical properties of an active chitosan film incorporated with montmorillonite and natural antioxidants extracted from pomegranate rind. J Food Sci Technol 52(3):1471–1479. https://doi.org/10.1007/s13197-013-1137-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Qu B, Luo Y (2021) A review on the preparation and characterization of chitosan-clay nanocomposite films and coatings for food packaging applications. Carbohydr Polym Technol Appl 2:100102. https://doi.org/10.1016/j.carpta.2021.100102

    Article  CAS  Google Scholar 

  79. Rafique A, Mahmood Zia K, Zuber M, Tabasum S, Rehman S (2016) Chitosan functionalized poly(vinyl alcohol) for prospects biomedical and industrial applications: a review. Int J Biol Macromol 87:141–154. https://doi.org/10.1016/j.ijbiomac.2016.02.035

    Article  CAS  PubMed  Google Scholar 

  80. Raheem D (2013) Application of plastics and paper as food packaging materials ? An overview. Emir J Food Agric 25(3):177–188. https://doi.org/10.9755/ejfa.v25i3.11509

    Article  Google Scholar 

  81. Rambabu K, Bharath G, Banat F, Show PL, Cocoletzi HH (2018) Mango leaf extract incorporated chitosan antioxidant film for active food packaging. Int J Biol Macromol 126:1234–1243. https://doi.org/10.1016/j.ijbiomac.2018.12.196

    Article  CAS  Google Scholar 

  82. Riaz A, Lagnika C, Luo H, Dai Z, Nie M, Hashim MM, Liu C, Song J, Li D (2020) Chitosan-based biodegradable active food packaging film containing Chinese chive (Allium tuberosum) root extract for food application. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.02.078

    Article  PubMed  Google Scholar 

  83. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001

    Article  CAS  Google Scholar 

  84. Rodriguez-Núñez JR, Madera-Santana TJ, Sánchez-Machado DI, López-Cervantes J, Soto Valdez H (2013) Chitosan/hydrophilic plasticizer-based films: preparation, physicochemical and antimicrobial properties. J Polym Environ 22(1):41–51. https://doi.org/10.1007/s10924-013-0621-z

    Article  CAS  Google Scholar 

  85. Sady S, Blaszczyk A, Kozak W, Borylo P, Szindler M (2021) Quality assessment of innovative chitosan-based biopolymers for edible food packaging applications. Food Packag Shell Life 30:100756. https://doi.org/10.1016/j.fpsl.2021.100756

    Article  CAS  Google Scholar 

  86. Sagheer FAA, Al-Sughayer MA, Muslim S, Elsabee MZ (2009) Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohyrd Polym 77(2):410–419. https://doi.org/10.1016/j.carbpol.2009.01.032

    Article  CAS  Google Scholar 

  87. Sanches-Silva A, Costa D, Albuquerque TG, Buonocore GG, Ramos F, Castilho MC, Machodo AV, Costa HS (2014) Trends in the use of natural antioxidants in active food packaging: a review. Food Addit Contamin. Part A 31(3):374–395. https://doi.org/10.1080/19440049.2013.879215

    Article  CAS  Google Scholar 

  88. Saral Sarojini K, Indumathi MP, Rajarajeswari GR (2018) Mahua oil-based polyurethane/chitosan/nano ZnO composite films for biodegradable food packaging applications. Int J Biol Macromol 124:163–174. https://doi.org/10.1016/j.ijbiomac.2018.11.195

    Article  CAS  Google Scholar 

  89. Sanuja S, Agalya A, Umapathy MJ (2015) Synthesis and characterization of zinc oxide–neem oil–chitosan bionanocomposite for food packaging application. Int J Biol Macromol 74:76–84. https://doi.org/10.1016/j.ijbiomac.2014.11.036

    Article  CAS  PubMed  Google Scholar 

  90. Sanuja S, Agalya A, Umapathy MJ (2014) Studies on magnesium oxide reinforced chitosan bionanocomposite incorporated with clove oil for active food packaging application. Int J Polym Mater Polym Biomater 63(14):733–740. https://doi.org/10.1080/00914037.2013.879445

    Article  CAS  Google Scholar 

  91. Severino R, Ferrari G, Vu KD, Donsì F, Salmieri S, Lacroix M (2015) Antimicrobial effects of modified chitosan based coating containing nanoemulsion of essential oils, modified atmosphere packaging and gamma irradiation against Escherichia coli O157:H7 and Salmonella typhimurium on green beans. Food Control 50:215–222. https://doi.org/10.1016/j.foodcont.2014.08.029

    Article  CAS  Google Scholar 

  92. Shankar S, Rhim J-W (2018) Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocoll 82:116–123. https://doi.org/10.1016/j.foodhyd.2018.03.054

    Article  CAS  Google Scholar 

  93. Shariatinia Z, Fazli M (2015) Mechanical properties and antibacterial activities of novel nanobiocomposite films of chitosan and starch. Food Hydrocoll 46:112–124. https://doi.org/10.1016/j.foodhyd.2014.12.026

    Article  CAS  Google Scholar 

  94. Sionkowska A (2011) Current research on the blends of natural and synthetic polymers as new biomaterials: review. Prog Polym Sci 36(9):1254–1276. https://doi.org/10.1016/j.progpolymsci.2011.05.003

    Article  CAS  Google Scholar 

  95. Siracusa V (2016) Packaging material in the food industry. Antimicrob Food Packag. https://doi.org/10.1016/b978-0-12-800723-5.00007-3

    Article  Google Scholar 

  96. Siracusa V, Rocculi P, Romani S, Rosa MD (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19(12):634–643. https://doi.org/10.1016/j.tifs.2008.07.003

    Article  CAS  Google Scholar 

  97. Souza VGL, Fernando AL, Pires JRA, Rodrigues PF, Lopes AAS, Fernandes FMB (2017) Physical properties of chitosan films incorporated with natural antioxidants. Ind Crops Prod 107:565–572. https://doi.org/10.1016/j.indcrop.2017.04.056

    Article  CAS  Google Scholar 

  98. Srinivasa PC, Tharanathan RN (2007) Chitin/chitosan—Safe, ecofriendly packaging materials with multiple potential uses. Food Rev Int 23(1):53–72. https://doi.org/10.1080/87559120600998163

    Article  CAS  Google Scholar 

  99. Stachowiak N, Kowalonek J, Kozlowska J (2020) Effect of plasticizer and surfactant on the properties of poly(vinyl alcohol)/chitosan films. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.08.001

    Article  PubMed  Google Scholar 

  100. Tan YM, Lim SH, Tay BY, Lee MW, Thian ES (2015) Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology. Mater Res Bull 69:142–146. https://doi.org/10.1016/j.materresbull.2014.11.041

    Article  CAS  Google Scholar 

  101. Tanabe T, Okitsu N, Tachibana A, Yamauchi K (2002) Preparation and characterization of keratin–chitosan composite film. Biomaterials 23(3):817–825

    Article  CAS  PubMed  Google Scholar 

  102. Terzioğlu P, Güney F, Parın FN, Şen İ, Tuna S (2021) Biowaste orange peel incorporated chitosan/polyvinyl alcohol composite films for food packaging applications. Food Packag Shelf Life 30:100742. https://doi.org/10.1016/j.fpsl.2021.100742

    Article  CAS  Google Scholar 

  103. Terzioglu P, Altin Y, Kalemtas A, Celik Bedeloglu A (2020) Graphene oxide and zinc oxide decorated chitosan nanocomposite biofilms for packaging applications. J Polym Eng. https://doi.org/10.1515/polyeng-2019-0240

    Article  Google Scholar 

  104. Tripathi S, Mehrotra GK, Dutta PK (2011) Chitosan–silver oxide nanocomposite film: preparation and antimicrobial activity. Bull Mater Sci 34(1):29–35. https://doi.org/10.1007/s12034-011-0032-5

    Article  CAS  Google Scholar 

  105. Van den Broek LAM, Knoop RJI, Kappen FHJ, Boeriu CG (2015) Chitosan films and blends for packaging material. Carbohydr Polym 116:237–242. https://doi.org/10.1016/j.carbpol.2014.07.039

    Article  CAS  PubMed  Google Scholar 

  106. Varma A, Deshpande S, Kennedy J (2004) Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym 55(1):77–93. https://doi.org/10.1016/j.carbpol.2003.08.005

    Article  CAS  Google Scholar 

  107. Vilela C, Pinto RJB, Coelho J, Domingues MRM, Daina S, Sadocco P, Santos SAO, Freire CSR (2017) Bioactive chitosan/ellagic acid films with UV-light protection for active food packaging. Food Hydrocoll 73:120–128. https://doi.org/10.1016/j.foodhyd.2017.06.037

    Article  CAS  Google Scholar 

  108. Wang H, Qian J, Ding F (2018) Emerging chitosan-based films for food packaging applications. J Agric Food Chem 66(2):395–413. https://doi.org/10.1021/acs.jafc.7b04528

    Article  CAS  PubMed  Google Scholar 

  109. Wang Y, Cen C, Chen J, Fu L (2020) MgO/Carboxymethyl chitosan nanocomposite improves thermal stability, waterproof and antibacterial performance for food packaging. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.116078

    Article  PubMed  PubMed Central  Google Scholar 

  110. Wardana AA, Kingwascharapong P, Tanaka F, Tanaka F (2021) CuO nanoparticles/Indonesian cedarwood essential oil-loaded chitosan coating film: characterisation and antifungal improvement against Penicillium spp. Int J Food Sci Technol. https://doi.org/10.1111/ijfs.15195

    Article  Google Scholar 

  111. Wen L, Liang Y, Lin Z, Xie D, Zheng Z, Xu C, Lin B (2021) Design of multifunctional food packaging films based on carboxymethyl chitosan/polyvinyl alcohol crosslinked network by using citric acid as crosslinker. Polymer 230:124048. https://doi.org/10.1016/j.polymer.2021.124048

    Article  CAS  Google Scholar 

  112. Wu Z, Huang X, Li Y-C, Xiao H, Wang X (2018) Novel chitosan films with laponite immobilized Ag nanoparticles for active food packaging. Carbohydr Polym 199:210–218. https://doi.org/10.1016/j.carbpol.2018.07.030

    Article  CAS  PubMed  Google Scholar 

  113. Wu J, Ge S, Liu H, Wang S, Chen S, Wang J, Li J, Zhang Q (2014) Properties and antimicrobial activity of silver carp (Hypophthalmichthys molitrix) skin gelatin-chitosan films incorporated with oregano essential oil for fish preservation. Food Packag Shelf Life 2(1):7–16. https://doi.org/10.1016/j.fpsl.2014.04.004

    Article  Google Scholar 

  114. Xiong Y, Chen M, Warner RD, Fang Z (2019) Incorporating nisin and grape seed extract in chitosan-gelatine edible coating and its effect on cold storage of fresh pork. Food Control 110:107018. https://doi.org/10.1016/j.foodcont.2019.107018

    Article  CAS  Google Scholar 

  115. Yadav S, Mehrotra GK, Dutta PK (2021) Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging. Food Chem 334:127605. https://doi.org/10.1016/j.foodchem.2020.127605

    Article  CAS  PubMed  Google Scholar 

  116. Youssef AM, Abou-Yousef H, El-Sayed SM, Kamel S (2015) Mechanical and antibacterial properties of novel high performance chitosan/nanocomposite films. Int J Biol Macromol 76:25–32. https://doi.org/10.1016/j.ijbiomac.2015.02.016

    Article  CAS  PubMed  Google Scholar 

  117. Yun Y-H, Lee C-M, Kim Y-S, Yoon S-D (2017) Preparation of chitosan/polyvinyl alcohol blended films containing sulfosuccinic acid as the crosslinking agent using UV curing process. Food Res Int 100:377–386. https://doi.org/10.1016/j.foodres.2017.07.030

    Article  CAS  PubMed  Google Scholar 

  118. Zahiri Oghani F, Tahvildari K, Nozari M (2021) novel antibacterial food packaging based on chitosan loaded ZnO nano particles prepared by green synthesis from nettle leaf extract. J Inorg Organomet Polym Mater 31:43–54. https://doi.org/10.1007/s10904-020-01621-7

    Article  CAS  Google Scholar 

  119. Zhang L, Wang H, Jin C, Zhang R, Li L, Li X, Jiang S (2017) Sodium lactate loaded chitosan-polyvinyl alcohol/montmorillonite composite film towards active food packaging. Innov Food Sci Emerg Technol 42:101–108. https://doi.org/10.1016/j.ifset.2017.06.007

    Article  CAS  Google Scholar 

  120. Zhang X, Liu Y, Yong H, Qin Y, Liu J, Liu J (2019) Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract. Food Hydrocoll 94:80–92. https://doi.org/10.1016/j.foodhyd.2019.03.009

    Article  CAS  Google Scholar 

  121. Zhang Y, Rempel C, Mclaren D (2014) Edible coating and film materials. Innov Food Packag. https://doi.org/10.1016/b978-0-12-394601-0.00012-6

    Article  Google Scholar 

  122. Zivanovic S, Li J, Davidson PM, Kit K (2007) Physical, mechanical, and antibacterial properties of chitosan/PEO blend films. Biomacromol 8(5):1505–1510. https://doi.org/10.1021/bm061140p

    Article  CAS  Google Scholar 

Download references

Funding

This research is not financially supported by any funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

GP, SS, VS: Conceptualization; Methodology; Writing—review & editing. PSK: Conceptualization; Methodology; Validation; Supervision. D-VNV, GR: Formal analysis; Validation; Data curation.

Corresponding author

Correspondence to P. Senthil Kumar.

Ethics declarations

Conflict of interest

The authors declare that no competing interests in this research article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasannamedha, G., Senthil Kumar, P., Shivaani, S. et al. A critical review on the fabrication of chitosan films from marine wastes. Polym. Bull. 81, 7551–7583 (2024). https://doi.org/10.1007/s00289-023-05082-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-05082-z

Keywords

Navigation