Skip to main content

Advertisement

Log in

Life Cycle Analysis of Extruded Films Based on Poly(lactic acid)/Cellulose Nanocrystal/Limonene: A Comparative Study with ATBC Plasticized PLA/OMMT Systems

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Life cycle analysis (LCA) of limonene plasticized poly(lactic acid) (PLA) films containing cellulose nanocrystals (CNC) extracted, by acid hydrolysis, from Phormium tenax leaf fibres, was assessed and compared with the results of acetyl tributyl citrate (ATBC) plasticized PLA films, having equivalent mechanical properties, containing organo-modified montmorillonite (OMMT). Eco-Indicator 99 tool has been adopted as the main method for life cycle assessment. Results indicated that, despite CNC are biobased fillers obtained by natural sources, the related chemical extraction leads to a large environmental footprint and a relatively relevant energy expense. LCA characterization of these films demonstrated that the environmental impact of PLA/limonene film reinforced with 1% in weight of CNC (PLA/CNC/limonene) is comparable to the environmental impact of polylactic acid films reinforced with OMMT and plasticized with a petroleum based plasticizer (ATBC) (PLA/OMTT/ATBC). A “cradle to gate” approach has been considered for both the film typologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Averous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci Polym R C44(3), 231–274

    Article  CAS  Google Scholar 

  2. Fortunati E, Armentano I, Iannoni A, Barbale M, Zaccheo S, Scavone M, Visai L, Kenny JM (2012) New multifunctional poly(lactide acid) composites: mechanical, antibacterial, and degradation properties. J Appl Polym Sci 124(1):87–98

    Article  CAS  Google Scholar 

  3. Arrieta MP, Fortunati E, Dominici F, Rayon E, Lopez J, Kenny JM (2014) Multifunctional PLA-PHB/cellulose nanocrystal films processing, structural and thermal properties. Carbohydr Polym 107:16–24

    Article  CAS  Google Scholar 

  4. Auras RA, Singh SP, Singh, JJ (2005) Evaluation of oriented poly(lactide) polymers vs. existing PET and oriented PS for fresh food service containers. Packag Technol Sci 18(4):207–216

    Article  CAS  Google Scholar 

  5. De Rosa IM, Iannoni A, Kenny JM, Puglia D, Santulli C, Sarasini F, Terenzi A (2011) Poly(lactic acid)/phormium tenax composites: morphology and thermo-mechanical behavior. Polym Compos 32(9):1362–1368

    Article  Google Scholar 

  6. Fortunati E, Puglia D, Santulli C, Sarasini F, Kenny JM (2012) Biodegradation of phormium tenax/poly(lactic acid) composites. J Appl Polym Sci 125:E562–E572

    Article  CAS  Google Scholar 

  7. Sarasini F, Puglia D, Fortunati E, Kenny JM, Santulli C (2013) Effect of fiber surface treatments on thermo-mechanical behavior of poly (lactic acid)/phormium tenax composites. J Polym Environ 21(3):881–891

    Article  CAS  Google Scholar 

  8. Petersen K, Nielsen PV, Olsen MB (2001) Physical and mechanical properties of biobased materials starch, polylactate and polyhydroxybutyrate. Starch-Stärke 53(8):356–361

    Article  CAS  Google Scholar 

  9. Matos Ruiz M, Cavaillé JY, Dufresne A, Gérard JF, Graillat C (2000) Processing and characterization of new thermoset nanocomposites based on cellulose whiskers. Compos Interface 7(2):117–131

    Article  Google Scholar 

  10. Fortunati E, Puglia D, Monti M, Peponi L, Santulli C, Kenny JM, Torre L (2013) Extraction of cellulose nanocrystals from phormium tenax fibres. J Polym Environ 21(2):319–328

    Article  CAS  Google Scholar 

  11. Fortunati E, Puglia D, Monti M, Santulli C, Maniruzzaman M, Kenny JM (2013) Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. J Appl Polym Sci 128(5):3220–3230

    Article  CAS  Google Scholar 

  12. Puglia D, Fortunati E, Torre L, Kenny JM, Monti M, Santulli C (2011) Bioplastic nano-reinforcement extracted from phormium leaf fibers. Society of Plastics Engineers Plastics Research Online. doi:10.1002/spepro.003937

  13. Fleischer T, Grunwald A (2008) Making nanotechnology developments sustainable. A role for technology assessment? J Clean Prod 16(8):889–898

    Article  Google Scholar 

  14. Frischknecht R, Jungbluth N, Althaus HJ, Bauer C, Doka G, Dones R, Hischier R, Hellweg S, Humbert S, Köllner T (2007) Implementation of life cycle impact assessment methods. Ecoinvent Report No. 3 St. Gallen, July 2010

  15. Von Gleich A, Steinfeldt M, Petschow U (2008) A suggested three-tiered approach to assessing the implications of nanotechnology and influencing its development. J Clean Prod 16(8):899–909

    Article  Google Scholar 

  16. Arvidsson R, Ngyen D, Svanstrom M (2015) Life cycle assessment of cellulose nanofibrils production by mechanical treatment and two different pretreatment processes. Environ Sci Technol 49:6881–6890

    Article  CAS  Google Scholar 

  17. De Figueirêdo MCB, De Freitas Rosa M, Ugaya CML, De Souza MDSM, Da Silva Braid ACC, De Melo LFL (2012) Life cycle assessment of cellulose nanowhiskers. J Clean Prod 35:130–139

    Article  Google Scholar 

  18. Li Q, McGinnis S, Sydnor C, Wong A, Renneckar S (2013) Nanocellulose life cycle assessment. ACS Sustain Chem Eng 1(8):919–928

    Article  CAS  Google Scholar 

  19. Scatto M, Salmini E, Castiello S, Coltelli MB, Conzatti L, Stagnaro P, Andreotti L, Bronco S 2013. Plasticized and nanofilled poly (lactic acid) based cast films: effect of plasticizer and organoclay on processability and final properties. J Appl Polym Sci 127(6):4947–4956

    Article  CAS  Google Scholar 

  20. Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM (2012) Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polym Degrad Stab 97(10):2027–2036

    Article  CAS  Google Scholar 

  21. Fortunati E, Luzi F, Puglia D, Dominici F, Santulli C, Kenny JM, Torre L (2014) Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from phormium tenax leaves. Eur Polym J 56(0):77–91

    Article  CAS  Google Scholar 

  22. Pourbafrani M, McKechnie J, MacLean HL, Saville BA (2013) Life cycle greenhouse gas impacts of ethanol, biomethane and limonene production from citrus waste. Environ Res Lett 8:015007. doi:10.1088/1748-9326/8/1/015007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Petrucci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrucci, R., Fortunati, E., Puglia, D. et al. Life Cycle Analysis of Extruded Films Based on Poly(lactic acid)/Cellulose Nanocrystal/Limonene: A Comparative Study with ATBC Plasticized PLA/OMMT Systems. J Polym Environ 26, 1891–1902 (2018). https://doi.org/10.1007/s10924-017-1085-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1085-3

Keywords

Navigation