Skip to main content
Log in

Aging: working memory capacity and spatial strategies in a virtual orientation task

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Brain networks involved in working and spatial memory are closely intertwined, outlining a potential relation between these processes, which are also affected in non-pathological aging. Working memory is a pre-requisite for other complex cognitive processes. The main aim of this study is to explore how working memory capacity (WMC) can influence the asymmetrical decline in spatial orientation strategies in an older segment of population compared to young participants. Forty-eight older adults and twelve young students took part in the study. Working memory and spatial memory were assessed using the Change Localization Task and The Boxes Room Task, respectively. In The Boxes Room Task, two different configurations assessed the use of egocentric and allocentric reference frames. Results showed that older adults with better WMC outperformed those with lower WMC in several tasks. Independently of WMC capacity, older participants performed better in the allocentric condition of The Boxes Room. In addition, young participants outscored low WMC older participants, but did not differ from high WMC older adults. Overly, these findings support the important relationship between working memory capacity and spatial orientations abilities. Thus, basic cognitive mechanisms engaged in information processing could inform about other brain processes more complex in nature, like spatial orientation skills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McAfoose J, Baune BT. Exploring visual–spatial working memory: a critical review of concepts and models. Neuropsychol Rev. 2009;19(1):130–42.

    Article  CAS  Google Scholar 

  2. Klatzky R. Allocentric and egocentric spatial representations: definitions, distinctions, and interconnections. Spat Cogn. 1998;1404:1–17. https://doi.org/10.1007/3-540-69342-4_1.

    Article  Google Scholar 

  3. Gallistel CR. The organization of learning. Cambridge, MA: MIT Press; 1990.

    Google Scholar 

  4. Foley RT, Whitwell RL, Goodale MA. The two-visual-systems hypothesis and the perspectival features of visual experience. Conscious Cogn. 2015;35(225):233. https://doi.org/10.1016/j.concog.2015.03.005.

    Article  Google Scholar 

  5. Ruggiero G, Ruotolo F, Iachini, T. How ageing and blindness affect egocentric and allocentric spatial memory. Q J Exp Pshochol. 2021; https://doi.org/10.1177/17470218211056772.

  6. Iaria G, Lanyon LJ, Fox CJ, Giaschi D, Barton J. Navigational skills correlate with hippocampal fractional anisotropy in humans. Hippocampus. 2008;18:335–9.

    Article  Google Scholar 

  7. O´Keefe J, Nadel L. The hippocampus as a cognitive map. Oxford: Oxford University Press; 1978.

  8. Danjo T. Allocentric representations of space in the hippocampus. Neurosci Res. 2019. https://doi.org/10.1016/j.neures.2019.06.002.

    Article  Google Scholar 

  9. Parslow DM, Morris RG, Fleminger S, Rahman Q, Abrahams S, Recce M. Allocentric spatial memory in humans with hippocampal lesions. Acta Psychol (Amst). 2005;118:123–47.

    Article  Google Scholar 

  10. Sereno MI, Huang RS. Multisensory maps in parietal cortex. Curr Opin Neurobiol. 2014;24:39–46. https://doi.org/10.1016/j.conb.2013.08.014.

    Article  CAS  Google Scholar 

  11. Konishi K, Etchamendy N, Roy S, Marighetto A, Rajah N, Bohbot VD. Decreased functional magnetic resonance imaging activity in the hippocampus in favor of the caudate nucleus in older adults tested in a virtual navigation task. Hippocampus. 2013;23:1005–14.

    Article  Google Scholar 

  12. Neggers SFW, van der Lubbe RHJ, Ramsey NF, Postma A. Interactions between ego-and allocentric neuronal representations of space. Neuroimage. 2006;31(320):331. https://doi.org/10.1016/j.neuroimage.2005.12.028.

    Article  Google Scholar 

  13. Zaehle T, Jordan K, Wüstenberg T, Baudewig J, Dechent P, Mast FW. The neural basis of the egocentric and allocentric spatial frame of reference. Brain Res. 2007;1137(1):92–103. https://doi.org/10.1016/j.brainres.2006.12.044.

    Article  CAS  Google Scholar 

  14. Burgess N. Spatial memory: how egocentric and allocentric combine. Trends Cogn Sci. 2006;10(12):551–7. https://doi.org/10.1016/j.tics.2006.10.005.

    Article  Google Scholar 

  15. Zhang H, Ekstrom A. Human neural systems underlying rigid and flexible forms of allocentric spatial representation. Hum Brain Mapp. 2013;34:1070–87. https://doi.org/10.1002/hbm.21494.

    Article  Google Scholar 

  16. Baddeley A. Working memory, theories models and controversy. The Annu Rev Psychol. 2012;63:12.1-12.29. https://doi.org/10.1146/annurev-psych-120710-100422.

    Article  Google Scholar 

  17. Miyake A, Friedman NP, Rettinger DA, Shah P, Hegarty M. How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. J Exp Psychol Gen. 2002;130(4):621.

    Article  Google Scholar 

  18. Kaufman SB. Sex differences in mental rotation and spatial visualization ability: can they be accounted for by differences in working memory capacity? Intelligence. 2007;35(3):211–23. https://doi.org/10.1016/j.intell.2006.07.009.

    Article  Google Scholar 

  19. Ploran EJ, Rovira E, Thompson JC, Parasuraman R. Underlying spatial skills to support navigation through large, unconstrained environments. Appl Cogn Psychol. 2015;29:608–13.

    Article  Google Scholar 

  20. Weisberg SM, Newcombe NS. How do (some) people make a cognitive map? Routes, places, and working memory. J Exp Psychol Learn Mem Cogn. 2016;42(5):768–85.

    Article  Google Scholar 

  21. Yonelinas AP. The hippocampus supports high-resolution binding in the service of perception, working memory and long-term memory. Behav Brain Res. 2013;254:34–44. https://doi.org/10.1016/j.bbr.2013.05.030.

    Article  Google Scholar 

  22. Banta Lavenex PA, Colombo F, Ribordy Lambert F, Lavenex P. The human hippocampus beyond the cognitive map: evidence from a densely amnesic patient. Front Hum Neurosci, 2014;8. https://doi.org/10.3389/fnhum.2014.00711

  23. Banta Lavenex P, Boujon V, Ndarugendamwo A, Lavenex P. Human short-term spatial memory: precision predicts capacity. Cogn Psychol. 2015;77:1–19. https://doi.org/10.1016/j.cogpsych.2015.02.001.

    Article  Google Scholar 

  24. Klencklen G, Lavenex PB, Brandner C, Lavenex P. Working memory decline in normal aging: memory load and reprentational demands affect performance. Learn Motiv. 2017;60:10–22.

    Article  Google Scholar 

  25. Klencklen G, Lavenex PB, Brandner C, Lavenex P. Working memory decline in normal aging: is it really worse in space than in color? Learn Motiv. 2017;57:48–60.

    Article  Google Scholar 

  26. Salthouse TA. Shared and unique influences on age-related cognitive change. Neuropsychology. 2017;31(1):11–9.

    Article  Google Scholar 

  27. Segen V, Avraamides MN, Slattery TJ, Wiener JM. Age-related differences in visual encoding and response strategies contribute to spatial memory deficits. Mem Cogn. 2021;49:249–64. https://doi.org/10.3758/s13421-020-01089-3.

    Article  Google Scholar 

  28. Moffat SD. Aging and spatial navigation: what do we know and where do we go? Neuropsychol Rev. 2009;19(4):478–89.

    Article  Google Scholar 

  29. Montefinese M, Sulpizio V, Galati G, Commiteri G. Age-related effects on spatial memory across viewpoint changes relative to different reference frames. Psychol Res. 2014;79(4):687–97.

    Article  Google Scholar 

  30. Rodgers MK, Sindone JA, Moffat SD. Effects of age on navigation strategy. Neurobiol Aging. 2012;33:202.e215-202.e222.

    Article  Google Scholar 

  31. Wiener JM, de Condappa O, Harris MA, Wolbers T. Maladaptive bias for extrahippocampal navigation strategies in aging humans. J Neurosci. 2013;33:6012–7.

    Article  CAS  Google Scholar 

  32. Bohbot VD, Iaria G, Petrides M. Hippocampal function and spatial memory: evidence from functional neuroimaging in healthy participants and performance of patients with medial temporal lobe resections. Neuropsychology. 2004;18:418–25. https://doi.org/10.1037/0894-4105.18.3.418.

    Article  Google Scholar 

  33. Harris MA, Wolbers T. Ageing effects on path integration and landmark navigation. Hippocampus. 2012;22(8):1770–80.

    Article  Google Scholar 

  34. Harris MA, Wolbers T. How age-related strategy switching deficits affect wayfinding in complex environments. Neurobiol Aging. 2014;35:1095–102.

    Article  Google Scholar 

  35. Nagel IE, Chicherio C, Li SC, von Oertzen T, Sander T, Villringer A, Heekeren HR, Backman L, Lindenberger U. Human aging magnifies genetic effects on executive functioning and working memory. Front Hum Neurosci. 2008;2(1). https://doi.org/10.3389/neuro.09.001.2008.

  36. D’Antuono G, Maini M, Marin D, Boccia M, Piccardi L. Effect of ageing on verbal and visuo-spatial working memory: evidence from 880 individuals. Appl Neuropsychol Adult. 2022;29:193–202. https://doi.org/10.1080/23279095.2020.1732979.

    Article  Google Scholar 

  37. Meilinger T, Knauff M, Bϋlthoff HH. Working memory in wayfinding – a dual task experiment in a virtual city. Cogn Sci. 2008;32:755–70.

    Article  Google Scholar 

  38. Borella E, Meneghetti C, Ronconi L, De Beni R. Spatial abilities across the adult life span. Dev Psychol. 2014;50(2):384–92.

    Article  Google Scholar 

  39. Matheis RJ, Schultheis MT, Tiersky LA, DeLuca J, Millis SR, Rizzo A. Is learning and memory different in a virtual environment? Clin Neuropsychol. 2007;21:146–61.

    Article  Google Scholar 

  40. León I, Tascon L, Ortells-Pareja JJ, Cimadevilla JM. Virtual reality assessment of walking and non-walking space in men and women with virtual reality-based tasks. Plos One, 2018;13(10):e0204995. https://doi.org/10.1371/journal.pone.0204995.

  41. Piccardi L, Iaria G, Bianchini F, Zompanti L, Guariglia C. Dissociated deficits of visuo-spatial memory in near space and navigational space: evidence from brain-damaged patients and healthy older participants. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2011;18:362–84.

    Article  CAS  Google Scholar 

  42. Cánovas R, Espínola M, Iribarne L, Cimadevilla JM. A new virtual task to evaluate human place learning. Behav Brain Res. 2008;190(1):112–8.

    Article  Google Scholar 

  43. Chang E, Kim HT, Yoo, B. Virtual reality sickness: a review of causes and measurements. Int J Hum-Comput Interact, 2020;1–25. https://doi.org/10.1080/10447318.2020.1778351.

  44. Tascón L, Castillo-Escamilla J, León I, Cimadevilla JM. Walking and non-walking space in an equivalent virtual reality task: sexual dimorphism and aging decline of spatial abilities. Behav Brain Res. 2018. https://doi.org/10.1016/j.bbr.2018.03.022.

    Article  Google Scholar 

  45. Canovas R, Leon I, Roldan MD, Astur R, Cimadevilla JM. Virtual reality tasks disclose spatial memory alterations in fibromyalgia. Rheumatology. 2009;48(10):1273–8. https://doi.org/10.1093/rheumatology/kep218.

    Article  Google Scholar 

  46. Rosas K, Parrón I, Serrano P, Cimadevilla JM. Spatial recognition memory in a virtual reality task is altered in refractory temporal lobe epilepsy. Epilepsy Behav. 2013;28(2):227–31. https://doi.org/10.1016/j.yebeh.2013.05.010.

    Article  Google Scholar 

  47. Johnson MK, McMahon RP, Robinson BM, Harvey AN, Hahn B, Leonard CJ, Gold JM. The relationship between working memory capacity and broad measures of cognitive ability in healthy adults and people with schizophrenia. Neuropsychology. 2013;27:220–9.

    Article  Google Scholar 

  48. Ortells JJ, De Fockert JW, Romera N, Fernandez S. Expectancy-based strategic processes are influenced by spatial working memory load and individual differences in working memory capacity. Front Psychol. 2018;9:1239. https://doi.org/10.3389/fpsyg.2018.01239.

  49. Cowan N, Elliott EM, Saults JS, Morey CC, Mattox S, Hismjatullina A, et al. On the capacity of attention: its estimation and its role in working memory and cognitive aptitudes. Cogn Psychol. 2005;51:42–100. https://doi.org/10.1016/j.cogpsych.2004.12.001.

    Article  Google Scholar 

  50. Kyllingsbæk S, Bundesen C. Changing change detection: improving the reliability of measures of visual short-term memory capacity. Psychon Bull Rev. 2009;16:1000–10.

    Article  Google Scholar 

  51. Noguera C, Fernández S, Álvarez D, Carmona E, Marí-Beffa P, Ortells JJ. The implementation of expectancy-based strategic processes is delayed in normal aging. PLoS ONE. 2019;14: e0214322.

    Article  CAS  Google Scholar 

  52. Castillo Escamilla J, Fernández Castro JJ, Baliyan S, Ortells-Pareja JJ, Ortells Rodríguez JJ, Cimadevilla JM. Allocentric spatial memory performance in a virtual reality-based task is conditioned by visuospatial working memory capacity. Brain Sci. 2020;10(8):552. https://doi.org/10.3390/brainsci10080552.

    Article  Google Scholar 

  53. Fernández-Baizan C, Díaz-Cáceres E, Arias JL, Méndez M. Spatial memory assessment reveals age-related differences in egocentric and allocentric memory performance. Behav Brain Res. 2020;388: 112646.

    Article  Google Scholar 

  54. Kessels RP, van Zandvoort MJ, Postma A, Kappelle J, de Haan EH. The Corsi Block-Tapping Task: standardization and normative data. Appl Neuropsych. 2000;7(4):252–8. https://doi.org/10.1207/S15324826AN0704_8.

    Article  CAS  Google Scholar 

  55. Wechsler D. WAIS-IV. Escala de inteligencia de Wechsler para adultos-IV. Manual de aplicación y corrección.; Madrid: NCS Pearson, Inc. Edición original, 2008

  56. Lobo A, Ezquerra J, Gómez Burgada F, Sala JM, Seva DíazA. Cognocitive mini-test (a simple practical test to detect intellectual changes in medical patients). Actas Luso Esp Neurol Psiquiatr Cienc Afines. 1979;7(3):189–202.

    CAS  Google Scholar 

  57. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.

    Article  CAS  Google Scholar 

  58. Wechsler D. WMS-III administration and scoring manual. San Antonio, TX: The Psychological Corporation; 1997.

    Google Scholar 

  59. McAndrews MP, Cohn M. Neuropsychology in temporal lobe epilepsy: influences from cognitive neuroscience and functional neuroimaging. Epilepsy Res Treat, 2012; 1–13. https://doi.org/10.1155/2012/925238

  60. Engle R. Role of working-memory capacity in cognitive control. Curr Anthropol. 2010;51(S1):S17–26. https://doi.org/10.1086/650572.

    Article  Google Scholar 

  61. Ladyka-Wojcik N, Olsen RK, Ryan JD, Barense MD. Flexible use of spatial frames of reference for object-location memory in older adults. Brain Sci. 2021;11(11):1542.

    Article  Google Scholar 

  62. Fukuda K, Woodman GF, Vogel EK. Individual differences in visual working memory capacity: contributions of attentional control to storage. In: Mechanisms of sensory working memory: attention and performance XXV (Jolicouer P, et al., eds), pp 105–119. San Diego: Academic. 2015.

  63. Fukuda K, Mance I, Vogel EK. Alpha power modulation and event-related slow wave provide dissociable correlates of visual working memory. J Neurosci. 2015;35:14009–16.

    Article  CAS  Google Scholar 

  64. Bettio LEB, Rajendran L, Gil-Mohapel J. The effects of aging in the hippocampus and cognitive decline. Neurosci Biobehav Rev. 2017;79:66–86.

    Article  Google Scholar 

  65. Geinisman Y, Detoledo-Morrell L, Morrell F, Heller RE. Hippocampal markers of age-related memory dysfunction: behavioral, electrophysiological and morphological perspectives. Prog Neurobiol. 1995;45:223–52.

    Article  CAS  Google Scholar 

  66. Lithfous S, Dofour A, Blanc F, Després O. Allocentric but not egocentric orientation is impaired during normal aging: an ERP study. Neuropsychology. 2014;28:761–71.

    Article  Google Scholar 

  67. Erickson MA, Hahn B, Kiat JE, Alliende LM, Luck SJ, Gold JM. Neural basis of the visual working memory deficit in schizophrenia: merging evidence from fMRI and EEG. Schizophrenia Res. 2021;236:61–8.

    Article  Google Scholar 

  68. Gyselinck V, Meneghetti C, Bormetti M, Orriols E, Piolino P, De Beni R. Considering spatial ability in virtual route learning in early aging. Cogn Process. 2013;14: 309316. https://doi.org/10.1007/s10339-013-0557-1.

    Article  Google Scholar 

  69. Fernandez-Baizan C, Arias JL, Mendez M. Spatial memory assessment reveals age-related differences in egocentric and allocentric memory performance. Behav Brain Res. 2020;388: 112646. https://doi.org/10.1016/j.bbr.2020.112646.

    Article  Google Scholar 

  70. Colombo D, Serino S, Tuena C, Pedroli E, Dakanalis A, Cipresso P, Riva G. Egocentric and allocentric spatial reference frames in aging: a systematic review. Neurosci Biobehav Rev. 2017;80:605–21. https://doi.org/10.1016/j.neubiorev.2017.07.012.

    Article  Google Scholar 

  71. Fischer MH. Probing spatial working memory with the Corsi Blocks Task. Brain Cogn. 2001;45(2):143–54. https://doi.org/10.1006/brcg.2000.1221.

    Article  CAS  Google Scholar 

  72. Kukull WA, Larson EB, Teri L, Bowen J, McCormick W, Pfanschmidt ML. The mini-mental state examination score and the clinical diagnosis of dementia. J Clin Epidemiol. 1994;47(9):1061–7. https://doi.org/10.1016/0895-4356(94)90122-8.

    Article  CAS  Google Scholar 

  73. Smith T, Gildeh N, Holmes C. The Montreal Cognitive Assessment: validity and utility in a memory clinic setting. Can J Psychiatry. 2007;52(5):329–32. https://doi.org/10.1177/070674370705200508.

  74. McAndrews MP, Cohn M. Neuropsychology in temporal lobe epilepsy: influences from cognitive neuroscience and functional neuroimaging. Epilepsy Res Treat. 2012;1–13. https://doi.org/10.1155/2012/925238

  75. Preacher KJ, Rucker DD, MacCallum RC, Nicewander WA. Use of the extreme groups approach: a critical reexamination and new recommendations. Psychol Methods. 2005;10(2):178–92. https://doi.org/10.1037/1082-989x.10.2.178.

    Article  Google Scholar 

  76. Preacher KJ (2015). Extreme Groups Designs. The Encyclopedia of Clinical Psychology, 1–4. https://doi.org/10.1002/9781118625392.wbecp190.

  77. Unsworth N, Redick TS, McMillan BD, Hambrick DZ, Kane MJ, Engle RW. Is playing video games related to cognitive abilities? Psychol Sci. 2015;26(6):759–74. https://doi.org/10.1177/0956797615570367.

    Article  Google Scholar 

  78. Conway ARA, Kane MJ, Bunting MF, Hambrick DZ, Wilhelm O, Engle RW. Working memory span tasks: a methodological review and user’s guide. Psychon Bull Rev. 2005;12(5):769–86. https://doi.org/10.3758/bf03196772.

    Article  Google Scholar 

  79. Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, … Frisén J. Dynamics of hippocampal neurogenesis in adult humans. Cell, 2013; 153(6), 1219–1227. :https://doi.org/10.1016/j.cell.2013.05.002.

  80. Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn A-M, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4(11):1313–7. https://doi.org/10.1038/3305.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank José Ramón Ibañez for his help with English. Work developed under FPU19/02157 contract by the first author.

Funding

This work was supported by MICIU [PGC2018-101680-B-I00] and FEDER program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manuel Cimadevilla Redondo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo Escamilla, J., León Estrada, I., Alcaraz-Iborra, M. et al. Aging: working memory capacity and spatial strategies in a virtual orientation task. GeroScience 45, 159–175 (2023). https://doi.org/10.1007/s11357-022-00599-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-022-00599-z

Keywords

Navigation