Skip to main content
Log in

Effects of task prioritization on a postural-motor task in early-stage Parkinson’s disease: EEG connectivity and clinical implication

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Appropriate attentional resource allocation could minimize exaggerated dual-task interference due to basal ganglia dysfunction in Parkinson’s disease (PD). Here, we assessed the electroencephalography (EEG) functional connectivity to investigate how task prioritization affected posture-motor dual-tasks in PD. Sixteen early-stage PD patients and 16 healthy controls maintained balance in narrow stance alone (single-posture task) or while separating two interlocking rings (postural dual-task). The participants applied a posture-focus or supraposture-focus strategy in the postural dual-task. Postural sway dynamics, ring-touching time, and scalp EEG were analyzed. Both groups exhibited smaller postural sway size, postural determinism, and ring-touching time with the supraposture-focus versus posture-focus strategy. PD patients exhibited higher mean inter-regional connectivity strength than control subjects in both single and dual-task postural conditions. To cope with dual-task interference, PD patients increased inter-regional connectivity (especially with the posture-focus strategy), while control subjects reduced inter-regional connectivity. The difference in mean connectivity strength between the dual-task condition with supraposture-focus and single-posture condition was negatively correlated to the Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) part III total scores and hand-related sub-scores. Our findings suggest differential task prioritization effects on dual-task performance and cortical reorganization between early-stage PD and healthy individuals. Early-stage PD patients are advocated to use a supraposture-focus strategy during a postural dual-task. In addition, with a supraposture-focus strategy, PD patients with mild motor severity could increase compensatory inter-regional connectivity to cope with dual-task interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data sets generated and analyzed in this study are available from the corresponding author upon reasonable request.

Code availability

The scripts for analysis are available from the corresponding author upon reasonable request.

References

  1. Kim SD, Allen NE, Canning CG, Fung VS. Postural instability in patients with Parkinson’s disease Epidemiology pathophysiology and management. CNS Drugs. 2013;27(2):97–112. https://doi.org/10.1007/s40263-012-0012-3.

    Article  PubMed  Google Scholar 

  2. Chastan N, Debono B, Maltête D, Weber J. Discordance between measured postural instability and absence of clinical symptoms in Parkinson’s disease patients in the early stages of the disease. Mov Disord. 2008;23(3):366–72. https://doi.org/10.1002/mds.21840.

    Article  PubMed  Google Scholar 

  3. Halmi Z, Dinya E, Málly J. Destroyed non-dopaminergic pathways in the early stage of Parkinson’s disease assessed by posturography. Brain Res Bull. 2019;152:45–51. https://doi.org/10.1016/j.brainresbull.2019.07.001.

    Article  CAS  PubMed  Google Scholar 

  4. Brachman A, Marszałek W, Kamieniarz A, Michalska J, Pawłowski M, Juras G. Detection of postural control in early Parkinson’s disease: clinical testing vs modulation of center of pressure. PLoS One. 2021;16(1):e0245353. https://doi.org/10.1371/journal.pone.0245353.

    Article  CAS  Google Scholar 

  5. Wu T, Hallett M. Dual task interference in Parkinson’s disease. Eur Neurol Rev. 2009;4(2):34–7. https://doi.org/10.17925/ENR.2009.04.02.34.

    Article  Google Scholar 

  6. Boisgontier MP, Beets IA, Duysens J, Nieuwboer A, Krampe RT, Swinnen SP. Age-related differences in attentional cost associated with postural dual tasks: increased recruitment of generic cognitive resources in older adults. Neurosci Biobehav Rev. 2013;37(8):1824–37. https://doi.org/10.1016/j.neubiorev.2013.07.014.

    Article  PubMed  Google Scholar 

  7. McIsaac TL, Fritz NE, Quinn L, Muratori LM. Cognitive-motor interference in neurodegenerative disease: a narrative review and implications for clinical management. Front Psychol. 2018;9:2061. https://doi.org/10.3389/fpsyg.2018.02061.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chastan N, Decker LM. Posturo-locomotor markers of preclinical Parkinson’s disease. Neurophysiol Clin. 2019;49(2):173–80. https://doi.org/10.1016/j.neucli.2019.01.001.

    Article  PubMed  Google Scholar 

  9. Bloem BR, Grimbergen YA, van Dijk JG, Munneke M. The, “posture second” strategy: a review of wrong priorities in Parkinson’s disease. J Neurol Sci. 2006;248(1–2):196–204. https://doi.org/10.1016/j.jns.2006.05.010.

    Article  PubMed  Google Scholar 

  10. Peterson DS, Phan V, Richmond SB, Lee H. Effects of dual-tasking on time-to-boundary during stance in people with PD: a preliminary study. Clin Biomech (Bristol, Avon). 2021;88: 105420. https://doi.org/10.1016/j.clinbiomech.2021.105420.

    Article  CAS  Google Scholar 

  11. Canning CG. The effect of directing attention during walking under dual-task conditions in Parkinson’s disease. Parkinsonism Relat Disord. 2005;11(2):95–9. https://doi.org/10.1016/j.parkreldis.2004.09.006.

    Article  PubMed  Google Scholar 

  12. Yogev-Seligmann G, Rotem-Galili Y, Dickstein R, Giladi N, Hausdorff JM. Effects of explicit prioritization on dual task walking in patients with Parkinson’s disease. Gait Posture. 2012;35(4):641–6. https://doi.org/10.1016/j.gaitpost.2011.12.016.

    Article  PubMed  Google Scholar 

  13. Yogev-Seligmann G, Hausdorff JM, Giladi N. Do we always prioritize balance when walking? Towards an integrated model of task prioritization. Mov Disord. 2012;27(6):765–70. https://doi.org/10.1002/mds.24963.

    Article  PubMed  Google Scholar 

  14. Jehu DA, Desponts A, Paquet N, Lajoie Y. Prioritizing attention on a reaction time task improves postural control and reaction time. Int J Neurosci. 2015;125(2):100–6. https://doi.org/10.3109/00207454.2014.907573.

    Article  PubMed  Google Scholar 

  15. Yu SH, Huang CY. Improving posture-motor dual-task with a supraposture-focus strategy in young and elderly adults. PLoS ONE. 2017;12(2):e0170687. https://doi.org/10.1371/journal.pone.0170687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang CY, Chen YA, Hwang IS, Wu RM. Improving dual-task control with a posture-second strategy in early-stage Parkinson disease. Arch Phys Med Rehabil. 2018;99:1540–6. https://doi.org/10.1016/j.apmr.2018.02.013.

    Article  PubMed  Google Scholar 

  17. Hung YT, Chen LC, Wu RM, Huang CY. The effects of task prioritization on dual-tasking postural control in patients with Parkinson disease who have different postural impairments. Arch Phys Med Rehabil. 2020;101(7):1212–9. https://doi.org/10.1016/j.apmr.2020.02.014.

    Article  PubMed  Google Scholar 

  18. Vervoort G, Heremans E, Bengevoord A, Strouwen C, Nackaerts E, Vandenberghe W, et al. Dual-task-related neural connectivity changes in patients with Parkinson’ disease. Neuroscience. 2016;317:36–46. https://doi.org/10.1016/j.neuroscience.2015.12.056.

    Article  CAS  PubMed  Google Scholar 

  19. Peterson DS, Fling BW, Mancini M, Cohen RG, Nutt JG, Horak FB. Dual-task interference and brain structural connectivity in people with Parkinson’s disease who freeze. J Neurol Neurosurg Psychiatry. 2015;86(7):786–92. https://doi.org/10.1136/jnnp-2014-308840.

    Article  PubMed  Google Scholar 

  20. Lench DH, Embry A, Hydar A, Hanlon CA, Revuelta G. Increased on-state cortico-mesencephalic functional connectivity in Parkinson disease with freezing of gait. Parkinsonism Relat Disord. 2020;72:31–6. https://doi.org/10.1016/j.parkreldis.2020.02.008.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wu T, Hallett M. A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain. 2005;128(Pt 10):2250–9. https://doi.org/10.1093/brain/awh569.

    Article  PubMed  Google Scholar 

  22. Onu M, Badea L, Roceanu A, Tivarus M, Bajenaru O. Increased connectivity between sensorimotor and attentional areas in Parkinson’s disease. Neuroradiology. 2015;57(9):957–68. https://doi.org/10.1007/s00234-015-1556-y.

    Article  PubMed  Google Scholar 

  23. Azulay JP, Mesure S, Blin O. Influence of visual cues on gait in Parkinson’s disease: contribution to attention or sensory dependence? J Neurol Sci. 2006;248(1–2):192–5. https://doi.org/10.1016/j.jns.2006.05.008.

    Article  PubMed  Google Scholar 

  24. Berendse HW, Stam CJ. Stage-dependent patterns of disturbed neural synchrony in Parkinson’s disease. Parkinsonism Relat Disord. 2007;13(Suppl 3):S440–5. https://doi.org/10.1016/S1353-8020(08)70046-4.

    Article  PubMed  Google Scholar 

  25. Kim J, Criaud M, Cho SS, Díez-Cirarda M, Mihaescu A, Coakeley S, et al. Abnormal intrinsic brain functional network dynamics in Parkinson’s disease. Brain. 2017;140(11):2955–67. https://doi.org/10.1093/brain/awx233.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wen MC, Heng HSE, Hsu JL, Xu Z, Liew GM, Au WL, et al. Structural connectome alterations in prodromal and de novo Parkinson’s disease patients. Parkinsonism Relat Disord. 2017;45:21–7. https://doi.org/10.1016/j.parkreldis.2017.09.019.

    Article  CAS  PubMed  Google Scholar 

  27. Li X, Xiong Y, Liu S, Zhou R, Hu Z, Tong Y, et al. Predicting the post-therapy severity level (UPDRS-III) of patients with Parkinson’s disease after drug therapy by using the dynamic connectivity efficiency of fMRI. Front Neurol. 2019;10:668. https://doi.org/10.3389/fneur.2019.00668.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Abbasi N, Fereshtehnejad SM, Zeighami Y, Larcher KM, Postuma RB, Dagher A. Predicting severity and prognosis in Parkinson’s disease from brain microstructure and connectivity. Neuroimage Clin. 2020;25:102111. https://doi.org/10.1016/j.nicl.2019.102111.

    Article  PubMed  Google Scholar 

  29. Yogev G, Giladi N, Peretz C, Springer S, Simon ES, Hausdorff JM. Dual tasking, gait rhythmicity, and Parkinson’s disease: which aspects of gait are attention demanding? Eur J Neurosci. 2005;22(5):1248–56. https://doi.org/10.1111/j.1460-9568.2005.04298.x.

    Article  PubMed  Google Scholar 

  30. Brauer SG, Morris ME. Can people with Parkinson’s disease improve dual tasking when walking? Gait Posture. 2010;31(2):229–33. https://doi.org/10.1016/j.gaitpost.2009.10.011.

    Article  PubMed  Google Scholar 

  31. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55(3):181–4. https://doi.org/10.1136/jnnp.55.3.181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129–70. https://doi.org/10.1002/mds.22340.

    Article  PubMed  Google Scholar 

  33. Riley MA, Balasubramaniam R, Turvey MT. Recurrence quantification analysis of postural fluctuations. Gait Posture. 1999;9(1):65–78. https://doi.org/10.1016/s0966-6362(98)00044-7.

    Article  CAS  PubMed  Google Scholar 

  34. Schmit JM, Riley MA, Dalvi A, Sahay A, Shear PK, Shockley KD, et al. Deterministic center of pressure patterns characterize postural instability in Parkinson’s disease. Exp Brain Res. 2006;168:357–67. https://doi.org/10.1007/s00221-005-0094-y.

    Article  PubMed  Google Scholar 

  35. Negahban H, Sanjari MA, Karimi M, Parnianpour M. Complexity and variability of the center of pressure time series during quiet standing in patients with knee osteoarthritis. Clin Biomech (Bristol Avon). 2016;32:280–5. https://doi.org/10.1016/j.clinbiomech.2015.10.011.

    Article  Google Scholar 

  36. Kennel MB, Brown R, Abarbanel HD. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A. 1992;45(6):3403–11. https://doi.org/10.1103/physreva.45.3403.

    Article  CAS  PubMed  Google Scholar 

  37. Huang CY, Hwang IS. Behavioral data and neural correlates for postural prioritization and flexible resource allocation in concurrent postural and motor tasks. Hum Brain Mapp. 2013;34(3):635–50. https://doi.org/10.1002/hbm.21460.

    Article  PubMed  Google Scholar 

  38. Yu SH, Wu RM, Huang CY. Attentional resource associated with visual feedback on a postural dual task in Parkinson’s disease. Neurorehabil Neural Repair. 2020;34(10):891–903. https://doi.org/10.1177/1545968320948071.

    Article  PubMed  Google Scholar 

  39. Stam CJ, Nolte G, Daffertshofer A. Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp. 2007;28(11):1178–93. https://doi.org/10.1002/hbm.20346.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tewarie P, Hillebrand A, Schoonheim MM, van Dijk BW, Geurts JJ, Barkhof F, et al. Functional brain network analysis using minimum spanning trees in multiple sclerosis: an MEG source-space study. Neuroimage. 2014;88:308–18. https://doi.org/10.1016/j.neuroimage.2013.10.022.

    Article  CAS  PubMed  Google Scholar 

  41. Niso G, Bruña R, Pereda E, Gutiérrez R, Bajo R, Maestú F, et al. HERMES: towards an integrated toolbox to characterize functional and effective brain connectivity. Neuroinformatics. 2013;11(4):405–34. https://doi.org/10.1007/s12021-013-9186-1.

    Article  PubMed  Google Scholar 

  42. Fradette K, Keselman HJ, Lix L, Algina J, Wilcox RR. Conventional and robust paired and independent-samples t tests: type I error and power rates. J Mod Appl Stat Methods. 2003;2:481–96. https://doi.org/10.22237/jmasm/1067646120.

    Article  Google Scholar 

  43. Zalesky A, Fornito A, Bullmore ET. Network-based statistic: identifying differences in brain networks. Neuroimage. 2010;53(4):1197–207. https://doi.org/10.1016/j.neuroimage.2010.06.041.

    Article  PubMed  Google Scholar 

  44. Stoffregen TA, Smart LJ, Bardy BG, Pagulayan RJ. Postural stabilization of looking. J Exp Psychol Hum Percept Perform. 1999;25(6):1641–58. https://doi.org/10.1037/0096-1523.25.6.1641.

    Article  Google Scholar 

  45. Mitra S, Fraizer EV. Effects of explicit sway-minimization on postural–suprapostural dual-task performance. Hum Mov Sci. 2004;23(1):1–20. https://doi.org/10.1016/j.humov.2004.03.003.

    Article  PubMed  Google Scholar 

  46. Plummer P, Eskes G. Measuring treatment effects on dual-task performance: a framework for research and clinical practice. Front Hum Neurosci. 2015;9:225. https://doi.org/10.3389/fnhum.2015.00225.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sauvage C, De Greef N, Manto M, Jissendi P, Nioche C, Habas C. Reorganization of large-scale cognitive networks during automation of imagination of a complex sequential movement. J Neuroradiol. 2015;42(2):115–25. https://doi.org/10.1016/j.neurad.2014.04.001.

    Article  CAS  PubMed  Google Scholar 

  48. Jacobs JV, Horak FB. Cortical control of postural responses. J Neural Transm (Vienna). 2007;114(10):1339–48. https://doi.org/10.1007/s00702-007-0657-0.

    Article  CAS  Google Scholar 

  49. Takakusaki K. Forebrain control of locomotor behaviors. Brain Res Rev. 2008;57(1):192–8. https://doi.org/10.1016/j.brainresrev.2007.06.024.

    Article  PubMed  Google Scholar 

  50. DeLong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia. Arch Neurol. 2007;64(1):20–4. https://doi.org/10.1001/archneur.64.1.20.

    Article  PubMed  Google Scholar 

  51. Takakusaki K. Functional neuroanatomy for posture and gait control. J Mov Disord. 2017;10(1):1–17. https://doi.org/10.14802/jmd.16062.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Foltynie T, Brayne CE, Robbins TW, Barker RA. The cognitive ability of an incident cohort of Parkinson’s patients in the UK. The CamPaIGN study Brain. 2004;127(Pt 3):550–60. https://doi.org/10.1093/brain/awh067.

    Article  PubMed  Google Scholar 

  53. Dirnberger G, Jahanshahi M. Executive dysfunction in Parkinson’s disease: a review. J Neuropsychol. 2013;7(2):193–224. https://doi.org/10.1111/jnp.12028.

    Article  PubMed  Google Scholar 

  54. Wu T, Chan P, Hallett M. Effective connectivity of neural networks in automatic movements in Parkinson’s disease. Neuroimage. 2010;49(3):2581–7. https://doi.org/10.1016/j.neuroimage.2009.10.051.

    Article  CAS  PubMed  Google Scholar 

  55. Berry AS, Shah VD, Baker SL, Vogel JW, O’Neil JP, Janabi M, et al. Aging affects dopaminergic neural mechanisms of cognitive flexibility. J Neurosci. 2016;36(50):12559–69. https://doi.org/10.1523/JNEUROSCI.0626-16.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stav AL, Johansen KK, Auning E, Kalheim LF, Selnes P, Bjørnerud A, et al. Hippocampal subfield atrophy in relation to cerebrospinal fluid biomarkers and cognition in early Parkinson’s disease: a cross-sectional study. NPJ Parkinsons Dis. 2016;2:15030. https://doi.org/10.1038/npjparkd.2015.30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mallol R, Barrós-Loscertales A, López M, Belloch V, Parcet MA, Avila C. Compensatory cortical mechanisms in Parkinson’s disease evidenced with fMRI during the performance of pre-learned sequential movements. Brain Res. 2007;1147:265–71. https://doi.org/10.1016/j.brainres.2007.02.046.

    Article  CAS  PubMed  Google Scholar 

  58. Wu T, Wang L, Hallett M, Chen Y, Li K, Chan P. Effective connectivity of brain networks during self-initiated movement in Parkinson’s disease. Neuroimage. 2011;55(1):204–15. https://doi.org/10.1016/j.neuroimage.2010.11.074.

    Article  PubMed  Google Scholar 

  59. Göttlich M, Münte TF, Heldmann M, Kasten M, Hagenah J, Krämer UM. Altered resting state brain networks in Parkinson’s disease. PLoS ONE. 2013;8(10):e77336. https://doi.org/10.1371/journal.pone.0077336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schönberger AR, Hagelweide K, Pelzer EA, Fink GR, Schubotz RI. Motor loop dysfunction causes impaired cognitive sequencing in patients suffering from Parkinson’s disease. Neuropsychologia. 2015;77:409–20. https://doi.org/10.1016/j.neuropsychologia.2015.09.017.

    Article  PubMed  Google Scholar 

  61. Morcom AM, Henson RNA. Increased prefrontal activity with aging reflects nonspecific neural responses rather than compensation. J Neurosci. 2018;38(33):7303–13. https://doi.org/10.1523/JNEUROSCI.1701-17.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hülsdünker T, Mierau A, Neeb C, Kleinöder H, Strüder HK. Cortical processes associated with continuous balance control as revealed by EEG spectral power. Neurosci Lett. 2015;592:1–5. https://doi.org/10.1016/j.neulet.2015.02.049.

    Article  CAS  PubMed  Google Scholar 

  63. Ghosh P, Roy D, Banerjee A. Organization of directed functional connectivity among nodes of ventral attention network reveals the common network mechanisms underlying saliency processing across distinct spatial and spatio-temporal scales. Neuroimage. 2021;231:117869. https://doi.org/10.1016/j.neuroimage.2021.117869.

    Article  PubMed  Google Scholar 

  64. Malhotra P, Coulthard E, Husain M. Hemispatial neglect, balance and eye-movement control. Curr Opin Neurol. 2006;19(1):14–20. https://doi.org/10.1097/01.wco.0000198101.87670.7e.

    Article  PubMed  Google Scholar 

  65. Mentis MJ, Dhawan V, Feigin A, Delalot D, Zgaljardic D, Edwards C, et al. Early stage Parkinson’s disease patients and normal volunteers: comparative mechanisms of sequence learning. Hum Brain Mapp. 2003;20(4):246–58. https://doi.org/10.1002/hbm.10142.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Shen B, Pan Y, Jiang X, Wu Z, Zhu J, Dong J, et al. Altered putamen and cerebellum connectivity among different subtypes of Parkinson’s disease. CNS Neurosci Ther. 2016;26(2):207–14. https://doi.org/10.1111/cns.13259.

    Article  Google Scholar 

  67. Hou Y, Ou R, Yang J, Song W, Gong Q, Shang H. Patterns of striatal and cerebellar functional connectivity in early-stage drug-naïve patients with Parkinson’s disease subtypes. Neuroradiology. 2018;60(12):1323–33. https://doi.org/10.1007/s00234-018-2101-6.

    Article  PubMed  Google Scholar 

  68. Mueller K, Jech R, Ballarini T, Holiga Š, Růžička F, Piecha FA, et al. Modulatory effects of Levodopa on cerebellar connectivity in Parkinson’s disease. Cerebellum. 2019;18(2):212–24. https://doi.org/10.1007/s12311-018-0981-y.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by a grant from the Ministry of Science and Technology, R.O.C. Taiwan (grant no. MOST 109–2314-B-002–115-MY3).

Author information

Authors and Affiliations

Authors

Contributions

C.Y.H., R.M.W., and I.S.H. designed the experiments. C.Y.H., R.M.W., and L.C.C. conducted the experiments. C.Y.H., L.C.C., and I.S.H. analyzed the data. C.Y.H. and I.S.H. wrote the paper. C.Y.H acquired funding.

Corresponding author

Correspondence to Ing-Shiou Hwang.

Ethics declarations

Ethics approval

All procedures performed in this study were in accordance with the ethical standards of the Helsinki declaration and approved by the National Taiwan University Hospital Research Ethics Committee.

Consent for publication

For Supplementary Fig. 1, the participant has provided consent for medical photography and consented for the photographs to be used in the publication.

Consent to participate

Written informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, CY., Chen, LC., Wu, RM. et al. Effects of task prioritization on a postural-motor task in early-stage Parkinson’s disease: EEG connectivity and clinical implication. GeroScience 44, 2061–2075 (2022). https://doi.org/10.1007/s11357-022-00516-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-022-00516-4

Keywords

Navigation